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Abstract  
 

Dynamic models (DMs) are widely used for decision support. As the complexity of these 

models increases, it is getting more and more difficult to understand the interactions 

among the variables, so the identification and the validation of DMs require tools that can 

extract information from these models. We present an algorithm that transforms DMs into 

easily understandable causal loop diagrams (CLDs) and performs modularity and 

centrality analysis of the extracted networks to reveal the structure of CLDs and identify 

the roles of the critical variables. We apply the proposed methodology for the analysis of 

classical models of supply chain management. 

 

Keywords: Decision support, Network analysis, Dynamic models 

 

 

Introduction 

Decision support systems require models for representing problem-specific knowledge. 

Among these models, causal loop diagrams (CLDs) are widely used to visualize how the 

variables of a complex system are interrelated (Spector, 2001). CLDs have a network like 

representation, where the edges show the relationship types between variables 

represented as nodes. Building CLDs require in-depth expert knowledge, so there is a 

need for tools that can support the identification and the validation of these models 

(Richardson, 1986; Richardson, 1997; Saysel, 2006).  
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Dynamic models (DMs) are used when the decision requires the simulation of the model 

to predict the states of the system. DMs are used in wide variety of fields, like physics 

(Melby, 2005), economics (Gandalfo, 1971), chemistry, and medicine (Jackson, 2015). 

DMs are represented by Stock and Flow (SF) diagrams containing variables which 

describe parameters, stocks (state variables changing in time), and flows, representing the 

change rates. The more complex a DM is, the more precise prediction it can provide (Bar-

Yam, 1997). However, as the models evolve in complexity, it is getting more and more 

difficult to understand the mechanisms and the interactions among the variables.   

Our fundamental idea is that we transform DMs into CLDs. Since these models are too 

complex, we follow the rule of simplification (Doyle, 1999), we develop an algorithm 

that structures complex CLDs, and defines modules and automatically determines the 

main subjects of the system. 

Based on this concept we created a novel software tool to discover the hidden structure 

of dynamic models by converting it into a CLD. The proposed method helps in decision 

making, model creation, and validation by revealing the structure of complex systems, 

identifying key variables.  

Our methodology follows four steps: (1) transforming DMs to CLDs,  (2) modularity and 

centrality analysis of the CLD network, (3) identification of the roles of the modules, and 

(4) drawing the hierarchical CLD by connecting the extracted modules.  

The following sections will present the methodology; we will demonstrate the usability 

of our tool on two didactic and easy-to-understand supply chain based examples. Finally, 

we wrap it up in the conclusions section.  

 

Methodology 
 

(1) Transforming DMs to CLDs: The methodology starts with the transformation of 

system dynamic models into networks, which is not a trivial task. Figure 1 represents the 

stock and flow (SF) diagram of the following equation: 

 

Equation (1): 

𝑥𝑖(𝑡) =  ∫ 𝑘1𝑥𝑖(𝑡) − 𝑘2(𝑥𝑖(𝑡) + 𝑥𝑗(𝑡))𝑑𝑡
𝑡

0

  

 

 
Figure 1 – Didactic illustration of the structure of a stock and flow diagram  

representing a differential equation 
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Although the SF diagram enables a direct network interpretation, it has an internal logic 

of dynamical systems which should also be taken into account. A significant contribution 

of our work is that we call the attention on the influence of the outlet flow to the stock 

itself, and extend the network with this additional edge highlighted with red color in 

Figure 2. The colors indicate the type of the node: purple represents the parameters, 

orange stands for the flows, while blue illustrates the stocks of the process. After this 

conversation step, we extract the network of state variables (stocks) by reachability 

analysis. 

 

(2) Community detection and centrality analysis: Network community detection 

algorithms find groups of nodes that have more inner connections than with the nodes 

with the rest of the graph (Barabasi, 2016). We detect communities in the network with 

the Girvan-Newman algorithm (Girvan, 2002) and assume that the extracted communities 

are corresponding to the topics of the (network) model.  

 

The centrality of the nodes expresses the structural importance of the elements of the 

model. Beside the analysis of the degrees of the nodes (number of connections) we also 

calculated the PageRank centrality that was originally developed to evaluate the 

importance of web pages (Page, 1999). 

 

(3) Identification of the roles of the modules: The previously detected communities 

simplifies the model into interacting modules. We identified the roles of the modules 

based on their top-ranked nodes.  

 

 

(4) Drawing the hierarchical causal loop diagram (CLD) by connecting the extracted 

modules: The interacting groups can be represented as a hierarchical CLD, which 

visualisation can provide an easily interpretable overview of the system.  

 

In our work, we transformed dynamic models represented by Insight Maker XML files. 

To demonstrate the applicability of the methodology in the following we present two case 

studies related to supply chain modelling. 

 

 

 
Figure 2 – CLD representation of the converted SF diagram 
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Analysis of a classical supply chain model 

The first example studies a product flow including a factory, a warehouse, a depot, a 

retailer and a consumer and models transition, holding, ordering and purchasing costs 

(see Figure 3.). The model predicts total costs in time in respect of the consumer needs.  

 

 
Figure 3 – Illustrative supply chain model in Insight Maker:  

https://insightmaker.com/insight/106743/Clone-of-Supply-Chain-Model 

 

 

 
Figure 4 – Network representation of the supply chain model shown in Figure 3. 
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Figure 4 shows the network that we extracted from the dynamic model. In this figure the 

size of the nodes are scaled in respect of their PageRank centrality measure. Table 1 

shows the five most significant elements of the model. This ranking provides the 

immediate insight of the essential elements in the model. 

 
Table 1 – Most significant elements of the didactic supply chain model 

Model element Type of element PageRank 

Total Cost Variable 0.08857 

TC4 (Retailer<-> Consumer) Flow  0.082987 

Retailer Stock 0.082565 

TC3 (Depot<->Retailer) Flow 0.078135 

Depot Stock 0.0711 
 

Figure 5. highlights that modules identify groupings of the key elements in the model. In 

the next more complex example we will illustrate how a cognitive map of the models can 

be extracted from such groupings.  

 
Figure 5 – Communities in the supply chain model represented by different colours  
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Analysis of the beer distribution game 

As a complex illustrative example we study the dynamical model of the beer distribution 

game created by the Systems Dynamics Group at Massachusetts Institute of Technology 

in the 1960s. This example became essential as it effectively illustrates the bullwhip effect 

and the importance of sharing information in the supply chain (Lee, 1997; Nienhaus, 

2006). As can be seen in Figure 6., this four-tier supply chain involves retailer, 

wholesaler, distributor and the factory that should rely on orders from the resellers to 

create product forecasts, capacity, inventory planning and production schedule  

(Lee, 1997). 

 
Figure 6 – The beer distribution game simulation model in  

Insight Maker and its extracted network representation  
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In the simulation, we see the phenomena in the orders, how a single consumer request 

stimulates the supply chain. Studying the bullwhip effect brought the following 

conclusions as to the primary causes of the phenomena (Lee, 1997): Demand forecast 

updating (backorders),  Order batching (backorders), Price fluctuations, and Rationing 

and shortage gaming (stocks) 

As we can see in Figure 7, the most significant elements of the model are the backorders, 

which is also confirmed by the centality analyis of the network that we extracted from the 

simulator. The results of this analysis is summarised in Table 2 that shows the PageRank 

of the first six elements in the model.  

 
Table 2 – Most significant elements from the beer distribution game 

Model element Type of element PageRank 

Backorder Factory Stock 0.0349 

Backorder Distributor Stock  0.03359 

Backorder retailer Stock 0.03337 

Backorder Wholesaler Stock 0.031918 

Cost Distributor Stock 0.028088 

Cost Wholesaler Stock 0.02757 
 

 
Figure 7 – The simulation of the beer distribution game shows the bullwhip effect.  

Top: Orders of each player. Bottom: The inventory levels illustrate how a customer order 

influences the players and how it affects the orders and inventories of the supply chain 
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Based on the modularity analysis of the extracted network we can identify a cognitive 

map of the model (see Figure 8.). The reachability analysis (RA) shows more detailed 

information by highlighting how the state variables influence each other. In Figure 9 the 

edge weights are inversely proportional to the transitive path lengths, so the thicker is the 

edge, the more direct is the influence between the state variables.   

In this example, the RA explains that the bullwhip effect is formed due to there is no 

significant feedback to the factory. 

 

 

 
Figure 8 – Beer distribution game cognitive map 

 

 
Figure 9 – Beer distribution game reachability analysis 
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Conclusion 

We proposed a network-based methodology to structure and visualize knowledge 

extracted from system dynamic models. Based on the analysis of two classical models of 

supply chain management we demonstrated that the developed toolset can be used for the 

model validation and decision support by visualizing the importance and 

interconnectedness of the state variables on easily interpretable cause loop diagrams. 
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