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Abstract 
 

Additive Manufacturing (AM) is a manufacturing technique which allows the direct fabrication 

of three-dimensional design models using an additive approach by adding layer after layer. This 

does not only open new design possibilities but also constitutes a chance to reduce materials 

usage. The aim of this research paper is to simulate the potential reduction of materials 

inventories in the manufacturing industry and to point out possible implications for supply 

chains. For this purpose, a system dynamics model was created and applied on actual sales data 

of industrial AM units. 
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Introduction 
Additive Manufacturing (AM) is a manufacturing technique which allows the direct fabrication 

of three-dimensional design models using an additive approach. This means parts are made by 

adding material in layers as opposed to conventional subtractive manufacturing techniques 

(Gibson, Rosen, and Stucker, 2015). This does not only open new design possibilities but also 

constitutes a chance to reduce materials usage. Waller and Fawcett (2014), Huang, Liu, 

Mokasdar, and Hou (2013), Kietzmann, Pitt, and Berthon (2015), Ford and Despeisse (2016), 

and Wohlers (2014), address a potential reduction. It arises through the additive character of 

the manufacturing technology that reduces waste, the potential consolidation of separate parts 

into one complex part, the possibility of new design approaches with organic lattice like 

structures that reduce weight, the reduction of materials inventories due to the higher 

responsiveness of the technology, or the easier recycling of raw materials.  

Even though AM may have its origins in the 1980s or even earlier, the mainstream adoption 

of this innovative technology is just now really taking off. Bass (1969) described the adoption 

of such new ideas in his diffusion model. It assumes that the timing of a consumer's initial 

purchase is related to the number of previous buyers. The rate of adoption follows a normal 

distribution while the number of total adopters will resemble an s-shaped growth function. The 

theory is intended to apply to a broad range, of distinctive classes of products.  

The aim of this research paper is to simulate the potential reduction of materials inventories 

through the adoption of AM in the manufacturing industry and to point out possible implications 

for supply chains. While research addressing the adoption of AM and the potential materials 

reduction exist separately, no research combining the two aspects has so far been conducted. 

This paper aims at closing this gap and at analyzing mutual effects. Existing research 

considering the potential of AM to reduce materials usage was predominantly focused on 

isolated design or manufacturing aspects. Trends regarding the manufacturing industry as a 

whole have mainly been neglected, therefore in this paper materials saving will be looked at 

from a more holistic and general point of view. For this purpose, a system dynamics simulation 

was created, combining the Bass Diffusion Model with a Materials Inventory Model. Necessary 

parameters were estimated through a literature review. After a thorough validation process the 

model was applied on real sales data of industrial AM system units and the results were 

presented in a way that expands insights into the field of AM and its impact on manufacturing.  

Literature Review 
In the system dynamics model later described in this paper the potential overall materials saving 

is composed of three sub-components: the degree of adoption of AM, the proportion of total 

manufacturing that could potentially be substituted by AM, and the so-called saving factor 

which stands for the potential materials saving. The following literature review will analyze 

and present the relevant literature according to those three sub-categories and then briefly 

review the literature about the effects of materials saving through AM on supply chains. 

Degree of Adoption 

Schniederjans (2017) explains that even though there are several obvious advantages of AM 

and despite the fact that it has been around for decades, the technology adoption is still in its 

infancy. A gradual adoption of AM and especially the direct digital manufacturing is predicted 

by Holmström, Holweg, Khajavi, and Partanen (2016) as manufacturing firms will introduce 

the new technology to improve their current operations. This is supported by Rogers (1983) 

who states that most innovations, in fact, diffuse at a surprisingly slow rate as even 

advantageous innovations do not sell themselves automatically.  
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Interest in the new technology is constantly increasing. Waller and Fawcett (2014) analyzed 

search engine results for AM and found an exponential growth in the time frame of 2004-2013. 

Furthermore, a Bibliometrics search using the Google Scholar data base conducted by Steenhuis 

and Pretorius (2015) showed the same trend but additionally found a much higher cumulative 

trend when including the term “industrial”. Apart of academia several practitioners performed 

research on that topic. In a global survey led by Ernst and Young (2016) a strong cross-industry 

trend toward the adoption of AM was identified for the next five years. Stratasys, one of the 

world´s leading producers of AM equipment predicted additive metal use to nearly double over 

the next 3 years (Stratasys Direct Manufacturing, 2015). The rising adoption of AM is well 

reflected by a compound annual growth rate (CAGR) of 27% over the last 25 years. From 2011 

to 2013 it was 32.3%. to reach a market volume of 3.07 billion USD in 2013 (Wohlers, 2014). 

Saving Factor 
Table 1: Estimations of Saving Factor for AM 

Source Estimation of Saving Factor for AM Sector 

Thiesse et al. (2015) >30% Aviation / Automotive 

The Economist (2011) <90% Aviation 

Despeisse and Ford (2015) <60% Aviation 

Lušić et al. (2015) <72% Tooling 

 

AM certainly uses less material in the production process. This has implications for inventory 

management, transportation, warehousing, and purchasing, as lower order quantities mean less 

transportation, and less space for raw materials required (Waller and Fawcett, 2014). Ford and 

Despeisse (2016) add that as AM mimics biological processes by creating products layer-by-

layer it is inherently less wasteful. Despeisse and Ford (2015) mentioned that material input to 

final component ratios of 4:1 are common using traditional milling processes. In aviation, where 

20:1 is not uncommon, materials savings of up to 60% have already been realized. Additionally, 

in case that there is unused material after an AM build, most AM variations allow for the unused 

material to be recycled after each build (Pour, Zanardi, Bacchetti, and Zanoni, 2016).  

Thiesse, Wirth, Kemper, Moisa, Morar, and Lasi (2015) also explain potential materials 

savings through weight reduction as material is only applied in those areas where it is required 

for its purpose. The Economist (2011) went as far as to say that in aviation AM can reduce the 

material needed by up to 90%. According to Lušić, Barabanov, Morina, Feuerstein, and 

Homfeck (2015), tools used for internal company production processes, such as molds, can also 

be manufactured by means of additive manufacturing. Faludi, Bayley, Bhogal and Iribarne 

(2015) compared several AM methods with CNC milling, and results indicate that AM is indeed 

more sustainable than subtractive manufacturing because it does not waste as much material.  

Proportion of Manufacturing 

AM is due to various technological solutions and the wide array of possible materials a very 

versatile technology. Therefore, and because of the rapid technological advancements and the 

unconsolidated market structure, predictions about the possible extent to which AM could 

substitute traditional manufacturing technologies are seemingly hard to make. Even Wohlers 

(2014), the probably most important source about AM, addresses the problem of quantifying 

the potential market penetration of AM. An actual penetration of 1% was mentioned by experts, 

while Wohlers estimates that AM could capture a share of more than 2% of global 

manufacturing industry. This fraction could although even be significantly higher.  
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Decreasing costs and new materials on offer could further boost AM’s infiltration among 

manufacturers (Pour et al., 2016). Rayna and Striukova (2016) argue that AM is clearly 

advantageous for customized products, but is still very likely to remain uneconomical for mass-

consumed objects unless a real demand for mass-customized products would emerge. Eyers, 

Naim, Potter, and Gosling (2016) also explain that AM is well-known for low-volume, high 

variety prototyping. Several applications have already demonstrated the potential to achieve a 

wide range of production volumes, whilst still retaining high variety in the products produced. 

Similarly, Holmström et al. (2016) describe that direct digital manufacturing so far lags behind 

by several orders of magnitude compared to traditional manufacturing methods. Yet they also 

found that direct digital manufacturing clearly is on an improvement trajectory. Cassaignau, 

Baillais, Wargny, de Melchior, and Lonjon (2016) say that the integration of AM within the 

organizations increased by 6% from 2015 to 2016. Comparable results were achieved by 

Kianian, Tavassoli, Larsson, and Diegel (2016), whose main findings show that the majority of 

AM users, namely 65%, are expanding their AM applications beyond rapid prototyping.  

Effects on Supply Chains 

While a fair amount of research exists concerning the effects of AM on supply chains, research 

assessing the effects from a material saving point of view is somewhat limited. The most 

relevant contributions for this paper will be briefly outlined here. Huang et al. (2013) point out 

that AM can improve the efficiency of a lean supply chain through just-in-time (JIT) 

manufacturing and waste reduction. The inventory management advantage is also brought up 

by Kietzmann et al. (2015), as firms can save space and cost by on-demand replication of stock 

items through AM rather than keeping items stockpiled in anticipation of a future need. Waller 

and Fawcett (2014) think that AM will cause a near shoring – that is, the return of offshore 

manufacturing – due to its various advantages. AM´s influence on logistics and supply chain 

management is likely to be transformational. First, it can be used by a consumer who downloads 

a design and then prints a product allowing for the ultimate in postponement and customization. 

Second, AM can also be used by a component supplier to print highly customized parts which 

in turn allows for fast feedback cycles at a lower echelon in the supply chain. Thiesse et al. 

(2015) explain that logistics processes can be digitalized through location independent 

manufacturing reducing the physical flow of material. 

Methodology and Model 
The chosen methodology for this paper is system dynamics, a research approach which allows 

the simulation of feedbacks and time delays in complex and dynamic systems. For these 

features system dynamics was chosen over agent-based or discrete-event simulation. Sterman 

(2000) points out that feedback loops make systems self-organizing and adaptive, therefore 

dynamics arise spontaneously from their internal structure, while time-delays may make the 

behavior unpredictable. Forrester (1961) explained that mathematical analysis in general is not 

powerful enough to provide analytical solutions to such complex situations. Experimental 

approaches are alternatives, but they cannot always be performed in real-life. Simulations can 

handle time-delays and thus policies and assumptions can be evaluated. In this paper, the impact 

of AM on the materials inventory will be analyzed using system dynamics. A model, combining 

two sub-models, a Diffusion Model and a Materials Inventory Model, was created using the 

specialized Vensim software. In Figure 1 the Materials Inventory Model can be seen to the left 

while the Diffusion Model is on the right. In the mid-section, here depicted in orange color, are 

the feedback mechanisms as identified in this paper. A simplified work-in-process model was 

included to indicate a possible extension to this model. In the following section, the two sub-

models will be briefly described, as both are well established an in depths analysis is at this 

point not necessary and more emphasis will be put on the feedback loop connecting the two.   
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Bass Diffusion 

Diffusion is the process by which an innovation is communicated through certain channels over 

time among the members of a social system (Rogers, 1983). Building up on that Bass (1969) 

established a Diffusion Model with the basic assumption that a consumer's initial purchase is 

related to the number of previous buyers. The model implies exponential growth of initial 

purchases to a peak and then exponential decay. This will result in a significant s-shaped growth 

function of total adopters. Phaal, O´Sullivan, Routley, Ford, and Probert (2011) stress that 

defining the phases and transitions associated with industrial emergence is important for 

understanding the underlying dynamics, and for providing guidance for organizations 

concerned with technology emergence. Sterman (2000) took up the original Bass Model and 

slightly adapted it to be used in system dynamics modelling. The Adoption Rate AR is 

composed of the Adoption from Advertising (external sources) and the Adoption from Word of 

Mouth (social exposure and imitation). The necessary input parameters are Advertising 

Effectiveness (a) and the Adoption Fraction (c). Formula 1 shows AR in mathematical notation 

which can then be modelled in system dynamics, as in Figure 1 to the right-hand side.  

𝐴𝑅 = 𝑎 ∗ (𝑁 − 𝐴) + 𝑐𝑖𝐴 −
𝑐𝑖

𝑁
∗ 𝐴2                                                                                                    (1) 

When it comes to AM there is a big uncertainty about the size of the potential total market 

of additive manufacturing (Wohlers, 2014), hence the value for Total Population (N) in this 

model was set at 100, while Advertising Effectiveness (a) and Adoption Fraction (c) were 

estimated through the analysis of real data as described later in this paper. 

Sterman Materials Inventory 

As the aim of this paper is to analyze the effects of AM on materials inventories the second 

sub-model used is the Materials Inventory Model as designed by Sterman (2000). It constitutes 

the left-hand part of the model as depicted in Figure 1. The materials inventory is modeled as a 

stock management structure where production can only begin if there is a sufficient level of 

materials. The central element of this model is the Materials Inventory stock which is defined 

by the following formula,  

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 = ∫ [
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 −

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑈𝑠𝑎𝑔𝑒 𝑅𝑎𝑡𝑒
] 𝑑𝑠 + 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑡0

𝑡

𝑡0

(2) 

The model was calibrated to reach an equilibrium value of 100 for Materials Inventory under 

the premise of constant demand.  Prior to reaching that equilibrium the model initially oscillates 

around this value when there is no initial inventory. Another important element in the Materials 

Inventory Model is the auxiliary variable Material Usage per Unit, measured as 

Material/Widget with an initial value of 1 but it will be decreased (or increased) by Materials 

Saving. 

Materials Saving 

The key input variable for this paper is Materials Saving which is the Product of Degree of 

Adoption, Saving Factor and Proportion of Manufacturing. It has the unit Material/Widget. 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 𝑆𝑎𝑣𝑖𝑛𝑔 = (
𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛 ∗ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 ∗

𝑆𝑎𝑣𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟
)        (3) 
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The Degree of Adoption is simply the fraction of members of the population that have 

already adopted AM. Initially it is 0, while it will eventually reach a maximum value of 1. 

𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐴𝑑𝑜𝑝𝑡𝑖𝑜𝑛 =
𝐴𝑑𝑜𝑝𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
                                                                                   (4) 

The Saving Factor is a number ranging from 0 to 1 and it stands for the amount of material 

per widget that could potentially be saved through the use of AM technology when compared 

to traditional manufacturing. During the literature review several sources addressing this 

component were identified (see Table 1) as no definitive statement concerning that value can 

be made a Monte Carlo Simulation was included (see Figure 3). The simulation comprises 2000 

runs assuming the following distribution, 

𝑆𝑎𝑣𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑅𝐴𝑁𝐷𝑂𝑀𝑈𝑁𝐼𝐹𝑂𝑅𝑀(0.3,0.9)                                                                               (5) 

The Proportion of Manufacturing is again a number between 0 and 1. It is the proportion of 

the total manufacturing market that can potentially be substituted by AM. As seen in the 

corresponding chapter of the literature review values are ranging quite a lot. A potential 

minimum, maximum, and a most likely case based on Wohlers (2014) were used for an assumed 

triangular distribution for the Monte Carlo Simulation, 

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 = 𝑅𝐴𝑁𝐷𝑂𝑀𝑇𝑅𝐼𝐴𝑁𝐺𝑈𝐿𝐴𝑅(0.01,0.2,0.01,0.02,0.2)            (6) 

Material Usage per Unit is, as already described, assumed to be 1 initially but will be 

decreased (increased) by the Materials Saving variable. This reduction (increase) in material 

required per widget will be measured in the Materials Usage Trend, while the Buzz variable 

will then increase the Adoption from Word of Mouth and in consequence the Adoption Rate. 

This closes the reinforcing feedback loop R1 (which can be seen in Figure 1 in the mid-section, 

where the elements added during this research are colored in orange). 

Model Validation 
Building confidence in system dynamics models can be done through a variety of channels. 

Forrester and Senge (1980) explain that there is no single test for validation, confidence rather 

accumulates gradually as the model passes one test after another. The tests seek disproof but as 

the model withstands the tests confidence develops. Qudrat-Ullah (2012) proposes a two-step 

iterative assessment process, where structural and behavioral validity should be tested.  

For structural validity Vensim, the software application used for building the model 

presented in this paper, includes two testing tools. The Model Check will test the model for 

structural errors while the Units Check feature checks the model equation for the consistent use 

of units of measurement (Ventana Systems, 2016). The sub-models and the combined model 

underwent and passed the tests separately. Forrester and Senge (1980) identified several core 

tests but put a special note on the extreme-conditions test, where constants will be set to extreme 

values such as 0 or a very large number, then the behavior of the model should shift accordingly. 

The model passed various extreme conditions tests. After structural testing the behavior tests 

measure how accurately the model reproduces the major behavior patterns of the real system. 

Barlas (1994) stated that if the problem involves long-term and steady-state simulation, then 

standard statistical measures might be applicable. If the problem involves non-stationary 

behavior, as for example s-shaped growth, then such tools are practically impossible to apply, 

graphical or visual approaches might then be preferable. As the Bass Diffusion Model features 

s-shaped growth graphical tests were conducted and the model exhibited reasonable behavior 

patterns. 
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Results 
As the model has been validated and its behavior analyzed it was applied using real data. 

Therefore, Adoption Rate which is a non-linear differential equation was solved corresponding 

to Bass (1969): 

𝐹(𝑇) =
1 − 𝑒−(𝑎+𝑐)∗𝑇

𝑐
𝑎 𝑒−(𝑎+𝑐)∗𝑇 + 1

                                                                                                                      (7) 

F(T) in this form was then used for parameter estimation using nonlinear least squares (NLS) 

regression. For this paper, the NLS regression was performed in ‘R’ which is an interpreted 

computer language that contains functionality for a large number of statistical procedures. An 

approach based on the one presented by Cowpertwait and Metcalfe (2009) was applied. For the 

validation of the NLS analysis the NLS regression model was applied on data originally used 

by Bass (1969) and later by Marković and Jukić (2013) and the results were compared.  

As the NLS regression produced reasonable results it was hence applied on actual annual 

sales data of industrial AM system units for the time period of 1988-2013 rounded to the nearest 

hundreds as taken from Wohlers (2014).  Through this regression the Adoption Fraction (0.138) 

and the Advertising Effectiveness (0.00035) parameters were estimated. Even though they are 

lower than the mean values (0.302 / 0.04) as estimated in a meta-analysis conducted by Sultan, 

Farley, and Lehman (1990) the parameters are still within a reasonable range. The low 

Advertising Effectiveness parameter can be explained by the slow adoption of the technology. 

It has to be noted though that the statistical significance of the results decreased when including 

the sales figures of the year 2013 as this year featured a rather steep increase in sales. 

In Figure 2 the graph for the actual sales data is contrasted with the simulated number of 

Adopters. As can be seen they both exhibit a very slow initial rate of adoption, which is due to 

the low Advertising Effectiveness parameter as described above. 

The most important simulation result, the development of the Materials Inventory over time, 

can be seen in Figure 3. It indicates a probable reduction of inventory in the single-digit percent 

area. Included in the graph are 4 Percentiles, where the 50% percentile (yellow) is the area in 

which half of the runs are located. The reduction is likely to take place gradually, corresponding 

to the adoption process.  

Figure 2 – Actual versus predicted Sales of industrial AM 

System Units 

Actual Sales of industrial AM 
System Units 
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The statistical evaluation of this simulation results in following development over time for 

Materials Inventory (Table 2): 

Table 2 – Materials Inventory over Time 

Year 1988 1998 2008 2018 2028 2038 2048 2058 

Median 100 99.98 99.9 99.64 98.91 97.72 96.83 96.51 

Mean 100 99.97 99.88 99.56 98.68 97.21 96.14 95.77 

StDev 0 0.017 0.0778 0.284 0.859 1.814 2.492 2.726 

 

The statistical results of the simulation return a final median value of Materials Inventory of 

96.51 which would mean a potential 3.49% reduction of materials inventory in the 

manufacturing industry given all model assumptions as described in the other sections of this 

paper. Also of importance is the timing of the reduction. According to the model the impacts of 

AM on materials inventories up to the year 2018 are only marginal while most of the total 

reduction will take place during the time frame of 2018-2048 given the model results. 

Model Limitations and Further Research 
The model presented in this paper provides good orientation for decision makers on how the 

adoption of AM will affect materials usage and materials inventories, although the list of 

components used in this model is far from complete. First, according to Schniederjans (2017) 

AM is not a single technology but rather a category of different manufacturing approaches that 

proliferate at different speeds, hence a separate analysis might yield more specific results. 

Second, the cost factor of AM has not been considered, Thomas (2016) emphasized that the 

costs of AM technologies and materials have decreased steadily over time. Third, the know-

how diffusion is rather slow (Ford and Despeisse, 2016). Further education of designers and 

engineers about the potential benefits of AM could spur its implementation. Finally, the biggest 

limitation of the model as presented here is that it only depicts a small part of the supply-chain. 

An expanded view on different supply chain processes could provide deeper insights into the 

behavior of the system and the effects of AM on inventories and the supply chain. 
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