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Abstract  
 

In this paper, we propose a proactive approach to design a robust supply chain network. 

The purpose of this model is supplier selection with the objective of minimizing the total 

cost and maximizing the supply chain visibility while considering the probability of 

suppliers’ failure. The model is based on double souring, considering second-tier 

suppliers. We calculate the visibility of suppliers and sub-suppliers and select the 

suppliers with higher visibility. By using numerical examples, we show that selecting 

suppliers with higher visibility lowers the probability of both suppliers’ failure. 
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Introduction 

From the literature, it becomes apparent that the main consideration in supply chain risk 

management is the visibility of the risk (Yu and Goh, 2014). (Harland et al., 2003) 

examined the supply chains and reported that less than half of the risk was visible to the 

focal company.  

One key question arising from the two Asian disasters and the extant literature that 

needs an answer is: how to choose the parts supplier in order to minimize the supply 

risk/disruptions due to the supply chain and how to invoke as high a visibility as possible 

without exceeding the production or total budget (Yu and Goh, 2014). According to 

(Enslow, 2006) about 79% of the large companies surveyed globally cited the lack of 

Supply Chain Visibility (SCV) as their top concern. (Ouyang, 2007) further shows that 

SCV implementation can enhance supply chain stability and mitigate the bullwhip effect. 

Visibility ensures confidence into the Supply Chain (SC) and prevents overreactions, 

unnecessary interventions and ineffective decisions in a risk event situation (Christopher 

and Lee, 2004). 

The motivation of this study is the disruption in SC of Toyota after the Great East 

Japan Earthquake in March 2011.  For two weeks after the earthquake, the entire Toyota 

plants in Japan stopped completely. However, most of Toyota assembly plants in Japan 

located in Nagoya and Kyushu regions and were not damaged by the earthquake. The 

problems were lack of parts, or not even knowing which parts would be missing when it 

resumed production. In other words, the lack of visibility in the downstream supply chain 

was one of the main problems. It is reported that it took one week for Toyota to list 500 
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suppliers from 200 locations. Moreover, the usual mitigation tactic of having multiple 

sourcing had not been taken into account (Matsuo, 2015). 

 

Supply chain visibility 

We read nine papers related to SCV and divided them into two categories of conceptual- 

empirical studies (five papers), and mathematical studies (four papers). Among these, 

only two papers considered visibility and risk simultaneously.  

Barratt and Oke (2007) reviewed the existing papers in SCV. Caridi et al. (2014) 

assessed the value of an improvement in SCV. Brusset (2016) and Lee et al. (2014) did 

empirical studies in supply chain visibility. Vilko et al. (2016) discussed theoretically the 

SCV. 

Among the papers who applied mathematical programming, Silva et al. (2017) did the 

simulation to study SCV. Caridi et al. (2010) studied the quantitative measures of 

visibility in supply networks. While only one paper (Yu and Goh, 2014) considered the 

Supply Chain Risk and SCV simultaneously. After that, Nooraie and Parast (2015) 

studied the stochastic version of the model presented by (Yu and Goh 2014) considering 

demand as stochastic.  

Caridi et al. (2010) mentioned that in any case, there is no single definition for SCV. 

They mentioned that in general there are three ways to define visibility. First way is 

defining visibility as the ‘‘ability to access/share information across the supply chain’’. 

In the second way of definition, visibility’s level in SC is determined by the extent to 

which the shared information is accurate, trusted, timely, useful, and in a readily usable 

format. Third way defines visibility as the importance of exchanging useful information 

between partners. In a nutshell, SCV is related to the information in the SC network. Thus, 

depending on the need and considered dimensions of SC network, SCV can be defined 

exclusively in each model of SC network. 

In our study, we follow the first approach which is “visibility as the ability to access 

or share information across the supply chain to define the SCV. However, as the author's 

highlight, this index is specific to retail and refers to a supply chain consisting of only 

two members, i.e. supplier and retailer, and thus not being suitable to assess the visibility 

level in more complex supply chains. Moreover, most authors either focus on simplified 

supply chains like two-level supply chain, which are far from the complexity of real 

environments or provide only ‘‘partial’’ measures, which do not consider the different 

dimensions of visibility (Caridi et al., 2010). 

In this model, we consider two-sides visibility: visibility of supplier and visibility of 

sub-supplier.  

 

• Sub-supplier visibility (vssi): 

Sub-supplier visibility or downstream SCV indicates the visibility level of the 

downstream supply chain members of the supplier. It is measured by the level of 

information disclosure from the supplier. 

By considering sub-supplier visibility, we aim to fill the gap of previous model 

(Khojasteh.G and irohara, 2018). In the previous model, they proposed a model based on 

double souring, where the two selected suppliers cannot share the same sub supplier.  

Clearly, we need to know the sub-suppliers as much as possible to avoid selection of 

suppliers which share the same sub-supplier. Therefore, we must know more information 

about the sub-suppliers which is called sub-suppliers’ visibility. Since considering 

visibility is just with the aim of knowing if the suppliers share the same sub-supplier or 

not, we limit the sub-supplier visibility’s scope to unique minimum information about 
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sub-suppliers. Hereby, we limit the information of sub-suppliers to the name and their 

location. We assume that each sub-supplier, as a focal company can have more than one 

plant. To validate our assumption, we refer to (Berger et al., 2004) who mentioned that 

to avoid the risk, firms are considering multiple locations. So, only knowing the name of 

sub-supplier is not enough. We assume that by knowing name and location of the sub-

suppliers, it will be clear if the candidate suppliers share a common sub-supplier or not. 

For quantifying sub-suppliers’ visibility, we follow the quantification method of Tse and 

Tan (2012) and write it as follow: 
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In equation (1), vssi is the visibility of sub-suppliers of supplier i. It is measured by the 

level of information disclosure from the supplier. U is the information set about sub-

suppliers that manufacturer requests the supplier i to provide; u is the specific information 

about sub-suppliers that manufacturer requests; xiqu is the status of disclosure of sub-

supplier q information u by supplier i; and βu reflects the importance of information u to 

the supplier visibility vssi. 

 

 

• Supplier Visibility (vi): 

For quantifying the visibility of the suppliers, we follow the methodology that Caridi 

et al. (2010) proposed. In consistent with the literature review, they defined visibility in 

terms of access to useful information. Therefore, it is considered that each supplier is 

characterized by a set of information which may be shared with the manufacturer. In other 

words, visibility is measured on the basis of the amount and quality of the information 

which the manufacturer knows, compared to the total information that could be 

exchanged. For diagnostic purposes, four different types of information flows are 

considered (Bracchi et al., 2001): transactions (e.g. order confirmation, ASN—Advance 

Shipping Notice), status information (e.g. stock level, residual shelf-life), master data 

(e.g. bill of materials, commercial information), and operational plans (e.g. distribution 

plan, production plan). 

The judgement about the exchanged information is based on three qualitative scales: 

one for measuring the quantity of the exchanged information, two for measuring its 

quality, in terms of both freshness and accuracy. The scales have four ordered response 

levels, from 1 (low rate) to 4 (best rate). Quantity and quality judgements are collected 

for each information flow (i.e. transactions/events, status information, master data, 

operational plans) and for each supplier. The procedure to evaluate the visibility is as 

follow, where: 

x ∈{q,a,f}, q=quantity,  a=accuracy,  f=freshness 

y ∈{t,s,m,o}, t=transactions,  s=status,  m=master data, o=operational plan 

The collected judgements are then combined—using the geometric mean—to have a 

synthetic evaluation of the visibility that the focal company has on each node. The 

geometric mean, which is obtained multiplying a set of n numbers and then nth rooting 
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the result—was chosen since it proved to better represent the phenomenon. Equation (2) 

depicts the visibility quantification. Equations (3 and 4) represents the how to calculate 

quantity of visibility and quality (accuracy and freshness) of visibility, respectively. Here, 

j represents the judgement. 

 

vi = )2(yVIS.yV iQualitiQuantit  
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,,,,,,,, oqimqisqitqi jjjj  

VQualityi = )4(.......4 4
,,,,,,,,,,,,,,,, ofimfisfitfioaimaisaitai jjjjjjjj  

 

Model description 

The existing model (Khojasteh.G and Irohara, 2018) had the single objective of 

minimizing the total cost. However, the current model upgrades the previous model with 

integrating the supply chain visibility as the second objective function. Authors believe 

that without considering downstream SCV, the previous model does not have its 

maximum functionality. 

 

The following notations are defined for formulating the mathematical model: 
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Equation (5) is minimizing the total cost which is from the previous model 

(Khojasteh.G and Irohara, 2018). Equation (6) is maximizing visibility, including 

suppliers’ visibility and sub-supplier’s visibility. Constraint (7) is the non-negativity of 

the integer decision variable. Constraint (8) serves as the capacity constraint for each 

supplier. Constraint (9) specifies that for each manufacturer, the total number of supplies 

to be received should be more than its demand. Constraint (10) specifies the concept of 

double sourcing. Constraint (11) prevents the selection from the suppliers which have the 

same sub-suppliers. Constraint (12 and 13) defines the relation between binary and 

integer decision variables. Constraint (14) specifies the minimum number of order from 

each supplier which should be a certain portion (percentage) of demand.  

 

Normalization of objective functions 

We solve the model using Gurobi Optimizer Version 6.5.0 mathematical programming 

solution software. All experiments were run on a personal computer with an Intel (R) 

Core (TM) i7-6700 CPU (3.40 GHz) and 16.0 GB of RAM. All the runs solved in few 

second.  

The mathematical programming model that we proposed is a multi-objective 

optimization problem. In order to solve it in Gurobi solver, we need to convert it to a 

single objective optimization problem. Besides, one of the objective functions is 

minimizing, even though the other is maximizing. Therefore, we transform the max 

objective function (f2 (x)) into equivalent minimization problems (-(f2 (x))). 

One of the common approaches to solve multi-objective optimization is the weighted 

sum method. The weighted sum method allows the multi-objective optimization problem 

to be solved as a single-objective mathematical optimization problem. This single 

objective function is the sum of objective functions fi multiplied by weighting coefficients 

αi. While, the weights for each objective function are assigned by the decision maker 

based on an intrinsic knowledge of the problem. The weighted sum method is formulated 

as: 
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We normalize objective functions (5) and (6) using a linear normalization technique 

to allow inter-criterion comparison. The idea is to normalize by the differences of optimal 

function values in the Utopia and Nadir points that give us the length of the intervals 

where the optimal objective functions vary within the Pareto optimal set (Mausser, 2006). 

To assign the same magnitude to each objective function, all objective functions after 

normalization will be bounded by spans below: 
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When considering the cost criterion, the ideal objective vector Uz , called the Utopia 

point, is not normally feasible because of the conflicting nature of the individual 

objectives. However, it can be obtained by minimizing each of the objective functions 

individually subject to the original constraints. The Utopia point provides the lower 

bounds of the Pareto optimal set for the cost criterion. The upper bounds of the Pareto 

optimal set are obtained from the components of a Nadir point zN. These are defined as 

the anti-ideal solution. Conversely, for the benefit criterion, normalization can be 

performed by maximizing the objective functions for the Utopia point, and 

simultaneously minimizing for the Nadir point. Therefore, objective functions (5) and (6) 

can be formulated as a single linear minimization objective function (6) (Manopiniwes 

and Irohara, 2017). 
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In equation (16), the formulation notes the following definitions: 

   Z1
U is a Utopia point with Min fi(x) for the cost criteria and Max fi(x) for the benefit 

criteria. 

   Z1
N is a Nadir point with Max fi(x) for the cost criteria and Min fi(x) for the benefit 

criteria. 

 

Numerical examples  

We examined the proposed model by using the numerical example. For the new parameter 

(vi), we use the dataset from Caridi et al. (2010) who applied real case studies. The 

information needed to evaluate visibility indexes was gathered by means of one or two 

direct interviews, lasting about three hours each. Instead, for the sub-supplier visibility 

(vssi), we use the weights 0.7 and 0.3 for the information about the location and the name 

of sub-suppliers, respectively. 

 

U={location, name} of sub-suppliers 

u1: location   β1=0.7 

u2: name       β2=0.3 

 

The double objective function selects two suppliers for each manufacturer with the 

maximum visibility and minimum total cost, with the restriction of having the common 
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point of failure- the same sub-suppliers. Therefore, this model lessens disruption risks by 

selection the suppliers which do not expose to the same kind of risk. Moreover, as the 

literature shows, visibility is one of the key reasons in risk avoidance (Yu and Goh, 2014). 

By selecting the suppliers with high visibility, the disruption probability in SC will be 

less. Besides, by selecting the supplier with high visibility in their sub-suppliers, we 

guarantee the higher performance of the previous model (Khojasteh.G and Irohara, 2018).  

To illustrate the applicability of our proposed model numerically, we calculate the 

suppliers’ failure probability. For supplier failure probability, we follow the formulation 

of Berger et al, (2004). They noted that if there is a single supplier, the probability of this 

supplier being down is 𝑆1 while if there are two suppliers, the probability that both will be 

unable to deliver is 𝑆1𝑆2. Besides, we assume that each supplier’s failure probability comes 

from two reasons. One reason is downstream suppliers, which in this case is sub-suppliers. 

The other reason can be from other causes which is out of scope to discuss here. We set a 

random number for the second reason. 

Figure 1 illustrates the importance of addition visibility in model B. As Figure 1 shows, 

without considering visibility, the two suppliers A and B will be selected. However, on 

the right-hand side of the same image, it is shown that two suppliers might share the same 

sub-supplier which due to the lack of visibility, we won’t be aware of it. Model C improve 

this decision and will not select the two suppliers A and B of Figure 1 together. 

 

 

 

Figure 1. Illustration of necessity of considering visibility 

 

We tried 5 datasets both with previous model and the current model. In each dataset, 

we consider 5 candidate suppliers. Depending on the SC network structure, the sub-

suppliers can be shared by suppliers. For example, if number of sub-suppliers is 5 and 

number of sub-suppliers for each supplier is 3, in 70% of cases, the two selected suppliers 

will share the same sub-supplier. In the previous model, the shared sub-supplier could be 

hidden. In the current model, since we consider the visibility of sub-suppliers as well, the 

model will select the two suppliers with higher visibility on their sub-supplier and 

therefore the possibility that they share the same sub-supplier will decrease. Figure 2 

shows the numerical example results of 5 datasets and compares the values of previous 

and current models. 

One of the important factors in double sourcing and its role in increasing the cost is the 

standard deviation of cost parameter of suppliers. When the standard deviation of unit 

purchasing cost (pi) and setup cost (hi) is close to zero, by changing the selected suppliers 

the total cost will not vary. In figure 1, we considered two cases when the standard 

A and B can be selected in 

Previous model 

A and B cannot be selected in 

current model 
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deviation of cost parameters of suppliers is zero and when the standard deviation is a 

positive number. In the lower part of figure 2, we assign the standard deviation to 5. 

 

 

Figure. 2 Comparison the results of previous and current model 

 

As figure 2 shows, when the standard deviation between cost parameters is close to 

zero, the total cost of current model will be the same as previous model. However, the 

disruption probability of suppliers will be lower in the current model. Moreover, the chart 

in the lower part of figure 2 also shows that the current model lowers the disruption 

probability. However, when the standard deviation of cost parameters is more than zero, 

the total cost fluctuates. Therefore, there is not a certain tendency in cost difference 

between previous and the current model. 
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Conclusion 

In this paper, we proposed a new mathematical programming model to complete an 

existing model (Khojasteh.G and Irohara 2018). The aim of the previous model was 

selecting two suppliers for each manufacturer while the selected suppliers could not share 

the same sub-supplier. The model aimed to avoid the suppliers’ failure when a sub-

supplier is down. In this model, we proposed to add SCV as the second objective function 

to complete the previous model. 

We considered suppliers’ visibility and the sub-supplier visibility. In numerical 

examples, we showed that by selecting the supplier with high visibility in their sub-

suppliers, we guarantee the higher performance of the previous model which is lower 

disruption probability of suppliers.  

We are certainly aware of the limitations of our models. The datasets we used are not 

all from a real case, and therefore the findings from experimental results are not 

astonishing. As a future study, we will try the currently proposed model with real data 

sets. 
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