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Abstract  
 

Although LP sensitivity analysis provides good inside on the effect of small changes in 

OFC or RHS parameters, in some cases the resulted ranges may be too tight for decision 

support, thus information about a wider range may be useful. For this purpose, a 

parametric analysis of the parameters must be considered. For doing this a good practical 

tool is provided by the AIMMS mathematical modelling system which is widely used for 

solving commercial optimization problems. 

The objective of this paper is to show, how parametric analysis of the OFC and RHS 

parameters can be performed correctly using AIMMS. 
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Introduction 

Organizations all over the world use business analytics (BA) to gain insight in order to 

drive business strategy and planning. The field of business analytics offers endless 

possibilities today and prescriptive analytics is the latest development in this field. 

Allocation of scarce resources is a typical problem often encountered by managers and 

linear programming (LP) is a widely used tool for supporting the decision making in this 

matter. LP models have some limitations: the objective function and the constraints on 

variables must be formulated using linear expressions and the decision variables have to 

be continuous. Although in practical cases, the linearity of constraints and the continuity 

of the decision variables may not hold, LP models are considered as a good 

approximation. In the era of Big Data ever more data is collected and is available for use 

in decision support models. Larger data implies larger models and quick, often instant 

decision must be made which requires the model to be solved quickly and managers also 

must deal with the uncertainty of the input parameters. 

The use of an LP model has two major advantages over the use of more complex Mixed 

Integer Linear Programing (MILP) model: computation time is less hardware and time 

consuming and further valuable insight can be gained about the problem using sensitivity 
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analysis. The standard form of an LP problem as described by Hiller and Lieberman 

(1995) is the following: 

 

max(𝐜𝑇𝐱) , 𝐀𝐱 ≤ 𝐛, 𝐱 ≥ 0  (1) 

 

where x is the decision variable vector, c is the objective function coefficients (OFC) 

vector, b is the right-hand-side (RHS) parameter vector. Table 1 contains all the notation 

used in the following part of the paper. Every linear programming problem, referred to as 

a primal problem, can be converted into a dual problem, which provides an upper bound 

to the optimal value of the primal problem. The standard form of the dual problem as 

described by Hiller and Lieberman (1995): 

 

min(𝐛𝑇𝐲) , 𝐀𝑇𝐲 ≥ 𝐜, 𝐲 ≥ 0  (2) 

 

The optimal solution of an LP problem provides the optimal allocation of limited 

resources, while the optimal solution of the dual problem provides information about the 

marginal change of the objective function of the primal problem (shadow price), if a right-

hand-side parameter changes. 

 
Table 1 – Summary of notation 

𝐀 Coefficient matrix  

𝐛 Righ-hand-side vector with elements 𝑏𝑗 (𝑗 = 1, . . , 𝐽)  

𝐜 Objective function coefficient vector with elements 𝑐𝑖 (𝑖 = 1, . . , 𝐼)  

𝑥 Variable vector of the primal problem with elements 𝑥𝑖 (𝑖 = 1, . . , 𝐼) 

𝐲 Variable vector of the dual problem with elements 𝑦𝑗  (𝑗 = 1, . . , 𝐽) 

𝐼𝑘 
Intervals with constant rate of change of the objective value function (𝑘 =
1, . . , 𝐾) 

𝐼𝑟𝑎𝑡𝑒
𝑘  Rate of change of the objective value function within the interval 𝐼𝑘 

𝐼𝑠
𝑘 Value of the objective function at the starting point of interval 𝐼𝑘 

𝐼𝑒
𝑘 Value of the objective function at the ending point of interval 𝐼𝑘 

𝐿𝑃(𝜆 ← 𝜈) Modified version of the original LP, where parameter 𝜆 is modified to 𝜈 

𝑂𝐹∗(𝜆 ← 𝜈) Optimal value of the 𝐿𝑃(𝜆 ← 𝜈) problem 

𝜉𝑗
+(𝑧) 

Maximal allowed increase of the z right-hand-side parameter of constraint 𝑗 to 

remain within the Type III invariancy interval related to the modified 𝐿𝑃(𝑏𝑗 ←

𝑧) problem 

𝜉𝑗
−(𝑧) 

Maximal allowed decrease of the z right-hand-side parameter of constraint 𝑗 to 

remain within the Type III invariancy interval related to the modified 𝐿𝑃(𝑏𝑗 ←

𝑧) problem 

𝛾𝑖
+(𝑧) 

Maximal allowed increase for the 𝑧 objective function coefficient of variable 𝑖 
to remain within the Type III invariancy interval related to the modified 

𝐿𝑃(𝑐𝑖 ← 𝑧) problem 

𝛾𝑖
−(𝑧) 

Maximal decrease allowed for the 𝑧 objective function coefficient of variable 

𝑖 to remain within the Type III invariancy interval related to the modified 

𝐿𝑃(𝑐𝑖 ← 𝑧) problem 

𝐞𝑗 Unit vector with J elements, where 𝑒𝑗 = 1 and 𝑒𝑘 = 0|𝑘 ≠ 𝑗 

𝛽𝑗
+ Maximal feasible increase of parameter 𝑏𝑗  

𝛽𝑗
− Maximal feasible decrease of parameter 𝑏𝑗 
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Finding the optimal solution is just the first step. Since many of the parameters 

involved in the models are generally approximations, expectations or forecasts based on 

statistically available data, managers must deal also with the uncertainty in the available 

data. Sensitivity analysis provides information about the validity range of the primal and 

dual optimum. The validity range of the objective function coefficients (OFC) provides a 

range for each coefficient, within which the primal optimal solution will not change. 

Validity range of the right-hand-side(RHS) elements provides a range for each right-

hand-side element. Within this range the dual optimum will not change. 

The theoretical problems of sensitivity analysis under degeneracy are well known in 

the literature (Gal, 1986; Jansen et al., 1997). Many papers demonstrate erroneous 

management decisions based on the misinterpretation of sensitivity analysis results 

(Jansen et al., 1997). Koltai and Terlaky (2000) classified three types of sensitivity 

information. In non-degenerate cases the three types of sensitivities are identical, but in 

degenerate cases different sensitivity information could be provided by solvers. Most of 

the commercial LP solvers provide only type I sensitivity information but from a 

management standpoint type III sensitivity information are far more important. 

Although sensitivity analysis provides good inside on the effect of small changes in 

OFC or RHS parameters, in some cases the resulted ranges may be too tight for decision 

support, thus information about a wider range may be useful. For this purpose, a 

parametric analysis of OFC and RHS parameters must be considered. The result of such 

an analysis is a set of consecutive intervals (𝐼𝑘, 𝑘 = 1. . 𝐾) with constant rate of change 

of the objective value function within each interval. For each interval the rate of change 

of the objective function (𝐼𝑟𝑎𝑡𝑒
𝑘 ) and the value of the objective function at the starting and 

ending points must be calculated (𝐼𝑠
𝑘 and 𝐼𝑒

𝑘).  

The remainder of this paper is organized as follows. First, the building blocks required 

to perform a parametric analysis of LP models are discussed. Next, the algorithms for 

calculating the consecutive intervals of the objective value function for the RHS and OFC 

parameters are presented. Finally, the AIMMS implementation is described and an 

illustration example is provided. 

 

Building blocks 

Consider the max(𝐜𝑇𝐱) , 𝐀𝐱 ≤ 𝐛, 𝐱 ≥ 0 linear program as the original LP to be solved, 

and 𝑐1, 𝑐2, … , 𝑐𝐼 are the elements of the 𝐜 OFC vector, furthermore, 𝑏1, 𝑏2, … , 𝑏𝐽 are the 

elements of the 𝑏 RHS parameters vector. 

As an initial step, a parametric model for solving the original LP with modified RHS 

or OFC values must be implemented. Let 𝐿𝑃(𝜆 ← 𝜈) note a modified version of the 

original LP where parameter 𝑦 is modified to 𝑧 and let 𝑂𝐹∗(𝜆 ← 𝜈) be the corresponding 

optimal objective value of the modified LP.  

For the calculation of the correct sensitivity ranges even in the degenerate case, a 

parametrized version of the additional LP’s described be Koltai and Tatay (2011) must 

also be implemented.  

Type III sensitivity provides information about the invariance of the rate of change of 

the objective value function. Let 𝜉𝑗
+(𝑧) and 𝜉𝑗

−(𝑧) denote the maximal increase and the 

maximal decrease allowed for the 𝑧 right-hand-side parameter of constraint 𝑗 to remain 

within the Type III invariancy interval related to the modified 𝐿𝑃(𝑏𝑗 ← 𝑧) problem.  

Similarly let 𝛾𝑖
+(𝑧) and 𝛾𝑖

−(𝑧) denote the maximal increase and the maximal decrease 

allowed for the 𝑧 objective function coefficient of variable 𝑖 to remain within the Type III 

invariancy interval related to the modified 𝐿𝑃(𝑐𝑖 ← 𝑧) problem.  
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Algorithm for calculating consecutive RHS intervals 

Intervals are calculated starting from the original right-hand-side parameter separately for 

increasing and decreasing directions and only when the original LP has at least one 

feasible solution.  

Change on the right-hand-side parameter in one direction causes the feasible region of 

the LP to shrink, while changes on the opposite direction expand the feasible region while 

the corresponding constraint is active. After removing the corresponding constraint, the 

LP problem may become unbounded. In this case the length of the last interval will 

become infinite. 

As an initial step, the maximal feasible change of the RHS parameter in the selected 

direction that allows the LP problem to remain feasible must be calculated. 

 

Table 2 –calculating the maximal feasible RHS change 

maximal feasible increase  maximal feasible decrease  

𝐀𝐱 ≤ 𝐛 − 𝑏𝑗𝐞𝑗 +  𝛽𝐞𝑗 

𝛽 ≥ 0  

𝐱 ≥ 0  

𝐦𝐚𝐱 (𝛽) 

 𝐀𝐱 ≤ 𝐛 − 𝑏𝑗𝐞𝑗 −  𝛽𝐞𝑗 

𝛽 ≥ 0  

𝐱 ≥ 0  

𝐦𝐚𝐱 (𝛽) 

 

 

To calculate these values an additional LP must be solved for each RHS parameter and 

each direction. For each constraint 𝑗, the maximal increases are determined by the LP 

problems of the first column of Table 2, while the maximal decreases are determined by 

the second column of Table 2. The maximal increase, as well as the maximal decrease 

are nonnegative numbers. The difference between these additional LP’s and the original 

LP consists in using constraint 𝑗 as an objective value function instead of being a 

constraint. Let 𝛽𝑗
+ and 𝛽𝑗

−notes the maximal feasible increase and the maximal feasible 

decrease respectively. One of these values may be infinite. 

The pseudo-code for calculating subsequent intervals is presented in Table 3. The first 

column presents the algorithm for collecting increasing RHS intervals, while the second 

column presents the algorithm for collecting decreasing intervals. The rate of change 

denoted by 𝑆𝑃+ and 𝑆𝑃− are the right and left shadow prices of the modified 𝐿𝑃(𝑏𝑗 ← 𝑏𝑗
𝑘) 

problem. 

After the initialization step where the maximal feasible modification of the RHS 

parameter is calculated, the following steps are repeated until the calculated maximal 

feasible modification is reached, or the maximum increase/decrease is infinite: 

• create and solve the modified 𝐿𝑃(𝑏𝑗 ← 𝑏𝑗
𝑘) problem, 

• calculate Type III range for the required direction, 

• collect interval data. 

 

Algorithm for calculating consecutive OFC intervals 

The modification of an OFC parameter does not influence the feasibility of the LP 

problem, however, after a certain point, the previously bounded problem may become 

unbounded.  

The pseudo-code for calculating subsequent OFC intervals, is presented in Table 4. 

The first column presents the algorithm for collecting increasing OFC intervals, while the 

second column presents the algorithm for collecting decreasing intervals. 
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Table 3 – Algorithm for calculating consecutive RHS intervals 

collecting increasing RHS intervals collecting decreasing RHS intervals 

𝑘 ≔ 0 

calculate 𝛽𝑗
+  

 

repeat 

𝑏𝑗
𝑘 ≔ {

𝑏𝑗 , 𝑘 = 0

𝐼𝑒
𝑘−1, 𝑘 ≥ 1

 

solve 𝐿𝑃(𝑏𝑗 ← 𝑏𝑗
𝑘) 

calculate 𝜉𝑗
+(𝑏𝑗

𝑘) 

𝐼𝑠
𝑘 ≔ 𝑏𝑗

𝑘 

𝐼𝑒
𝑘 ≔ 𝐼𝑠

𝑘 + 𝜉𝑗
+(𝑏𝑗

𝑘) 

𝐼𝑟𝑎𝑡𝑒
𝑘 ≔ 𝑆𝑃+ 

until (𝐼𝑒
𝑘 = 𝛽𝑗

+ 𝑜𝑟 𝜉𝑗
+(𝑏𝑗

𝑘) = inf) 

 

𝑘 ≔ 0 

calculate 𝛽𝑗
−  

 

repeat 

𝑏𝑗
𝑘 ≔ {

𝑏𝑗 , 𝑘 = 0

𝐼𝑠
𝑘−1, 𝑘 ≥ 1

 

solve 𝐿𝑃(𝑏𝑗 ← 𝑏𝑗
𝑘) 

calculate 𝜉𝑗
−(𝑏𝑗

𝑘) 

𝐼𝑒
𝑘 ≔ 𝑏𝑗

𝑘 

𝐼𝑠
𝑘 ≔ 𝐼𝑒

𝑘 − 𝜉𝑗
−(𝑏𝑗

𝑘) 

𝐼𝑟𝑎𝑡𝑒
𝑘 ≔ 𝑆𝑃− 

until (𝐼𝑒
𝑘 = 𝛽𝑗

− 𝑜𝑟 𝜉𝑗
−(𝑏𝑗

𝑘) = inf) 

 

 

In case of OFC parameters the objective value is changed exclusively by the change 

of the OFC parameter and the rate of change is equal to the value of variable 𝑖 in the 

optimal solution (𝑥𝑖) of the modified 𝐿𝑃(𝑐𝑖 ← 𝑐𝑖
𝑘) problem. 

The following steps are repeated while the maximum increase/decrease is finite: 

• create and solve the modified 𝐿𝑃(𝑐𝑖 ← 𝑐𝑖
𝑘) problem, 

• calculate Type III range for the required direction, 

• collect interval data. 

 

Table 4 – Algorithm for calculating consecutive OFC intervals 

collecting increasing OFC intervals collecting decreasing OFC intervals 

𝑘 ≔ 0 

repeat 

𝑐𝑖
𝑘 ≔ {

𝑐𝑖, 𝑘 = 0

𝐼𝑒
𝑘−1, 𝑘 ≥ 1

 

solve 𝐿𝑃(𝑐𝑖 ← 𝑐𝑖
𝑘) 

calculate 𝛾𝑖
+(𝑐𝑖

𝑘)  

𝐼𝑠
𝑘 ≔ 𝑐𝑖

𝑘  

𝐼𝑒
𝑘 ≔ 𝐼𝑠

𝑘 + 𝛾𝑖
+(𝑐𝑖

𝑘)  

𝐼𝑟𝑎𝑡𝑒
𝑘 ≔ 𝑥𝑖 

until (𝛾𝑖
𝑘 = inf) 

𝑘 ≔ 0 

repeat 

𝑐𝑖
𝑘 ≔ {

𝑏𝑐𝑖, 𝑘 = 0

𝐼𝑠
𝑘−1, 𝑘 ≥ 1

 

solve 𝐿𝑃(𝑐𝑖 ← 𝑐𝑖
𝑘) 

calculate 𝛾𝑖
−(𝑐𝑖

𝑘)  

𝐼𝑠
𝑘 ≔ 𝐼𝑒

𝑘 − 𝛾𝑖
−(𝑐𝑖

𝑘)  

𝐼𝑒
𝑘 ≔ 𝑐𝑖

𝑘 . 

𝐼𝑟𝑎𝑡𝑒
𝑘 ≔ 𝑥𝑖 

until (𝛾𝑖
𝑘 = inf) 
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AIMMS implementation 

From a practical point of view, creating a tool that can calculate and visualize the 

parametric objective value function requires a good solver and algorithmic and graphical 

user interface editing capabilities. Such a tool is provided by the AIMMS Prescriptive 

Analytics Platform, which is often used for solving commercial optimization problems in 

a wide range of industries including retail, consumer products, healthcare, oil and 

chemicals, steel production and agribusiness. (Roelofs, Bisschop, 2018) 

AIMMS Prescriptive Analytics Platform is a tool for those with an Operations 

Research or Analytics background and offers a straightforward mathematical modelling 

environment and a wide range of available solvers. AIMMS also features an advanced 

graphical user interface editor which allows the creation of optimization application to 

individuals without a technical or analytics background.  

For illustration purposes AIMMS version 4.42 was used to create the required 

mathematical models, implement the algorithms and create simple user interface, while 

CPLEX version 12.7.1 was used to solve the generated LP problems.  

Four parametrized models were created in AIMMS: 

• general parametrized linear program to solve both 𝐿𝑃(𝑐𝑖 ← 𝑐𝑖
𝑘) and 𝐿𝑃(𝑏𝑗 ← 𝑏𝑗

𝑘) 

problems, 

• modified parametrized linear program to calculate maximal feasible 

increase/decrease of the RHS parameters, 

• parametrized linear program to calculate Type III ranges of the right-hand-side 

parameters, 

• parametrized linear program to calculate Type III ranges of the objective function 

coefficient parameters. 

To collect all Type III intervals the implementation of the algorithms presented in 

Table 3 and 4 are needed. The algorithm collects the data related to the intervals, which 

then can be visualized using tables and line charts using pages created with the AIMMS 

user interface editor. The implemented solution consists of the following pages: 

• LP definition page is the input page, where the desired LP can be formulated. 

• LP solution page contains the original results provided by the solver. 

• Two pages for presenting RHS interval data using table and line charts. 

• Two pages for presenting OFC interval data using table and line charts.  

 

Illustration example 

In this section, a modified version of a simple LP case study taken from Anderson et al., 

(2015) will be used to illustrate the implementation of the suggested parametric analysis.  

The problem consists in finding the optimal product mixt for a company producing 

three nut mixes for sale to grocery chains. The three mixes, referred to as the Regular 

Mix, the Deluxe Mix, and the Holiday Mix, are made by mixing different percentages of 

five types of nuts. For example, the Regular Mix consists of 15% almonds, 25% Brazil 

nuts, 25% filberts, 10% pecan and 20% walnuts. The company has an already purchased 

quantity from each raw material nut. Two make the LP related to the described problem 

dual degenerate, the amount of available almond and the margin of the Regular Mix were 

modified. 

Table 5 contains the mix ratio of all the mixes. The last two column of Table 5 contains 

the margins related to the products calculated based on the production costs and prices 

related and the total of already received orders for each product. The last row of the table 

contains the available quantities of the raw material nuts. 
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Table 5 – Mix ratio, available quantities of the raw nuts and the margins of the nut mixes 

 Almond Brazil nut Filbert Pecan Walnut Margin (c) Orders 

Regular 15% 25% 25% 10% 25% 1,5 10000 

Deluxe 20% 20% 20% 20% 20% 2 3000 

Holiday 25% 15% 15% 25% 20% 2,25 5000 

available 

quantity (b) 

5390 7500 7500 6000 7500   

 

Let 𝑥𝑅, 𝑥𝐷, 𝑥𝐻, 𝑐𝑅, 𝑐𝐷, 𝑐𝐻 denote the produced quantities and the margins of the 

Regular, Deluxe and Holiday mixes. The optimal product mix can be calculated using the 

following LP: 

max(𝑐𝑅𝑥𝑅 + 𝑐𝑅𝑥𝐷+𝑐𝑅𝑥𝐻) (3) 
0,15𝑥𝑅 + 0,20𝑥𝐷 + 0,25𝑥𝐻 ≤ 𝑏𝐴 (4) 
0,25𝑥𝑅 + 0,20𝑥𝐷 + 0,15𝑥𝐻 ≤ 𝑏𝐵 (5) 
0,25𝑥𝑅 + 0,20𝑥𝐷 + 0,15𝑥𝐻 ≤ 𝑏𝐹 (6) 
0,10𝑥𝑅 + 0,20𝑥𝐷 + 0,25𝑥𝐻 ≤ 𝑏𝑃 (7) 
0,25𝑥𝑅 + 0,20𝑥𝐷 + 0,20𝑥𝐻 ≤ 𝑏𝑊 (8) 
𝑥𝑅 ≥ 10000 (9) 
𝑥𝐷 ≥ 3000 (10) 
𝑥𝐻 ≥ 5000 (11) 

 

Table 6 contains the optimal product mix and the sensitivity intervals calculated by the 

solver. 

 
Table 6 – Optimal solution and validity ranges related to the OFC parameters 

 Optimal quantity Original OFC  OFC lower limit OFC upper limit 

Regular 10000 1,5 -∞ 1,5 

Deluxe 13200 2 2 ∞ 

Holiday 5000 2,25 -∞ 2,5 

 

Table 7 contains the shadow prices and the validity ranges related to the constraints. 

 
Table 7 – Shadow prices and validity ranges for the available quantity constraints 

 shadow price lower limit upper limit 

Almond 10 3350 6500 

Brazil 0 5890 ∞ 

Filbert 0 5890 ∞ 

Pecan 0 4890 ∞ 

Walnut 0 6140 ∞ 

 

Figure 1 contains the objective value function of the 𝑏𝑃 parameter. The red dot marks 

the initial value of the RHS parameter, while the red line marks the validity range of the 

shadow price calculated by the solvers, and since the right bound is infinite only the left 

bound is indicated. The rate of change of the objective value function within the intervals 

are written on the lines. The chart resulted from the parametric analysis shows that if the 

amount of pecan was less than 2850 tons the problem would become infeasible. Between 
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2850 and 4210 tons the shadow price is 15 %/tons and for quantities higher than 4210 

tons the shadow price is 0. 

 

 
Figure 1 – Objective value function of the 𝑏𝑃 parameter 

 

Figure 2 shows the results of the OFC parametric analyses created by the AIMMS 

application. The table contains the interval start and end points, the rate of change of the 

objective value function within the interval, the value of the objective value function at 

the start and end point and the optimal solution related.  

 

 
Figure 2 – part of the AIMMS page with table containing all the OFC intervals 

 

Compared with the results provided by the basic AIMMS solver it can be noticed that 

the solver calculated misleading information about the validity intervals of the 𝑐𝑅 and 𝑐𝐷 

OFC parameters. The misleading information is the consequence of degeneracy. The 

presented method provides correct LP sensitivity information in case of degeneracy as 

well. Furthermore, the implemented AIMMS algorithm presents the objective value 

function for the whole feasible range of any required OFC and RHS parameter.  

 

Conclusion 

In this paper, the implementation of parametric analysis of LP models in AIMMS to 

support operations management decision making is presented. The information provided 

by the suggested method describes the objective value function in the feasible range of 

any OFC and RHS parameter.  
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The benefits of this information are twofold: 

• Since all values of the objective value function are known, there are no misleading 

results as a consequence of degeneracy. If appropriate, the left and right shadow 

prices (slope of the objective value function in case of decrease and increase) are 

given, and the correct ranges of all parameters are calculated. 

• The traditional sensitivity ranges provided by most commercial LP solvers are 

completed with further information. In our case, the effect of the parameter change 

is known, not only in the close neighbourhood of the original value, but also in the 

whole feasible region.  

The presented method can be used to support OM decision whenever the problem of 

the allocation of scarce resources must be solved, and LP models can properly describe 

or approximate the problem. The created AIMMS application, beside showing the 

consecutive Type III intervals in a table format, also contains a simple graphical 

presentation of the results using line charts, to create a better overview of the decision 

situation. The presented objective value function of any of the critical parameters can help 

operation managers to see directly the effect of planned or random parameter changes, or 

the possible consequences of the inaccuracy of data applied in the operation planning 

phase. 
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