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Abstract 
This paper addresses the well-established finding that individuals in supply chains often 
do not base their order decisions to the same degree on information they have about the 
supply line as on information they have about their stock. The accompanying advantages 
and disadvantages of this phenomenon are investigated by considering insights from 
production and inventory control theory. A system dynamics model representing the Beer 
Distribution Game was used for analysis. Results indicate that an imbalanced 
consideration of the supply line can be harmful in some cases but also beneficial in other 
cases. 
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Introduction 
One of the crucial objectives of Supply Chain Management is to maintain a high customer 
service level while simultaneously avoiding excess inventory throughout the supply chain 
(Mentzer et al., 2001). An opportunity to experience the difficulty of that seemingly easy 
task, is provided by the Beer Distribution Game, where participants need to manage a 
simulated serial supply chain and regularly have a hard time to handle the trade-off 
between having sufficient but not unnecessary high inventory levels (Sterman, 1989). A 
commonly observable phenomenon during the Beer Distribution Game is an increase in 
demand variability from downstream to upstream stages, also known as the bullwhip 
effect, leading to avoidable excess stock throughout the supply chain (Lee et al., 1997). 
In a seminal paper, Lee et al. (1997) deduced four important causes of the bullwhip effect: 
order batching, price fluctuations, demand forecasting and shortage gaming. The 
traditional Beer Distribution Game eliminates three of these four causes by (1) avoiding 
fixed ordering costs (no need for order batching), (2) removing the option to withhold 
products (no need for shortage gaming) and (3) removing any pricing opportunities (no 
price fluctuations). Modified versions of the Beer Distribution Game also control for 
demand forecasting by introducing a stationary demand which is known to everyone in 
the supply chain (Croson & Donohue, 2003, 2006). Despite the elimination of the four 
causes identified by Lee et al. (1997), a stream of research showed the persistence of the 
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bullwhip effect mainly due to behavioral causes (Croson & Donohue, 2003, 2006; Croson 
et al., 2014). 

One of the behavioral causes which Niranjan et al. (2009) consider as “the cornerstone 
of the theory of the behavioral causes of the bullwhip effect” (p. 355) is called Supply 
Line Underweighting. Supply Line Underweighting is based on the observation by 
Sterman (1989) that individuals’ order decisions follow an anchoring and adjustment 
heuristic. According to this observation, decision makers anchor their order quantity on 
the expected demand which needs to be satisfied and subsequently adjust the order rate 
by two fractions. One of these fractions accounts for the discrepancy between desired and 
actual stock level, the other fraction accounts for the discrepancy between desired and 
actual supply line level. Statistical analysis revealed the tendency of individuals to base 
the adjustment of their order decisions to a higher extent on the discrepancy between 
desired and actual stock level than on the discrepancy between desired and actual supply 
line level, which can be interpreted as and underweighting of the supply line (Croson et 
al., 2014; Sterman, 1989). The concept behind the order heuristic which leads to Supply 
Line Underweighting is also part of a body of literature that deals with production and 
inventory control theory (Naim & Towill, 1995).  

This paper applies findings from the field of production and inventory control theory 
for the investigation of Supply Line Underweighting in the context of the Beer 
Distribution Game. A system dynamics simulation shows that considering both fractions 
to the same amount is more cost efficient than Supply Line Underweighting when it 
comes to the performance of the supply chain in the Beer Distribution Game. 
Furthermore, the study on the one hand demonstrates that cost-efficiency can be increased 
even more by making use of Supply Line Overweighting, which is essentially the 
counterpart of Supply Line Underweighting. On the other hand, the study also points out 
the substantial risks which are associated with Supply Line Overweighting. 
 
Supply Line Underweighting framed in production and inventory control theory 
Control theory deals with the study of dynamic systems and was traditionally mostly 
applied in engineering. In the 1950s, amongst others propelled by Simon (1952) and 
Vassian (1955), the application of control theory to the field of production and inventory 
control gained momentum. Three decades later, Towill (1982) introduced the so called 
Inventory and Order Based Production Control Systems (IOBPCS), which is based on a 
periodic review policy for placing orders in a supply line. In case of a basic IOBPCS, 
orders are solely based on incoming demand from a customer and the discrepancy 
between desired and actual inventory, whereas the desired inventory level is fixed. John 
et al. (1994) further developed this model to an Automatic Pipeline Inventory and Order 
Based Production Control System (APIOBPCS) by incorporating an additional feedback 
loop, which considers the discrepancy between the desired and actual supply line level. 
The APIOBPCS archetype assumes a fixed inventory target level, but a variable supply 
line target level. The fixed inventory target level needs to be carefully defined in advance, 
whereas the variable supply line target is calculated by multiplying the forecasted 
expected loss rate with the process acquisition lag (John et al., 1994). The APIOBPCS 
policy is equivalent to the order heuristic observed by Sterman (1989) in the Beer 
Distribution Game (John et al., 1994; Naim & Towill, 1995). The order heuristic as well 
as the APIOBPCS model is described by Equation 1. 
 
Equation (1): 
𝐼𝐼𝐼𝐼 = 𝐿𝐿� + 𝛼𝛼𝑆𝑆(𝑆𝑆∗ − 𝑆𝑆) + 𝛼𝛼𝑆𝑆𝑆𝑆(𝑆𝑆𝐿𝐿∗ − 𝑆𝑆𝐿𝐿)            𝐼𝐼𝐼𝐼 ≥ 0 

 



3 
 

According to Equation 1, decision makers base their order quantities (𝐼𝐼𝐼𝐼) on an 
expected demand (𝐿𝐿�) and adjust this quantity by a fraction (α𝑆𝑆) of the discrepancy 
between the desired and actual inventory level (𝑆𝑆∗ − 𝑆𝑆) as well as a fraction (α𝑆𝑆𝑆𝑆) of the 
difference between a target and the actual supply line level (𝑆𝑆𝐿𝐿∗ − 𝑆𝑆𝐿𝐿) (Sterman, 1989). 
In control theory, the variables representing the fractions (α𝑆𝑆 and α𝑆𝑆𝑆𝑆) are also called 
proportional controllers. Selecting the appropriate values for the proportional controllers 
throughout the supply chain is critical for its ability to satisfy customer demand while 
keeping inventory levels low. If both proportional controllers are set to one (i.e., α𝑆𝑆 and 
α𝑆𝑆𝑆𝑆 = 1), the full discrepancies are recovered every period. In case of matching 
proportional controllers of a value smaller than 1, a smoothing replenishment policy is 
applied. (Disney et al., 2007). Such a smoothing replenishment policy reduces the 
bullwhip effect (Dejonckheere et al., 2004) and limits inventory costs (Chen & Disney, 
2007) but can also increase net inventory variance and consequently increases the chance 
of not being able to fulfill customer demand (Disney et al., 2007; 2006). 

Empirical data collected from many runs of the Beer Distribution Game show the 
difficulty for human players to tune the proportional controllers to optimal values. 
Recalling the anchoring and adjustment heuristic by Sterman (1989), people tend to 
systematically underweight the supply line in that, they choose a lower value for the 
proportional controller concerning the supply line than for the one controlling the 
inventory level. This results in large fluctuations of orders, supply line levels and 
eventually inventories which are amplified as one moves upstream the supply chain. For 
example, if demand increases and the supply line is underweighted, the actual stock level 
will be, after a delay, higher than the desired stock level. This in turn triggers periods of 
underordering (Riddalls & Bennett, 2002).  

Setting both proportional controllers to the same value implies absence of Supply Line 
Underweighting. This case of equal proportional controllers was studied by Deziel & 
Eilon (1967) and later classified as a special case of APIOBPCS named DE-APIOBPCS 
after the first letters of each author’s name (Disney & Towill, 2003). Following the DE-
APIOBPCS policy, it is guaranteed that the system is stable for arbitrary lead times and 
that oscillations in the order rate are avoided (Disney & Towill, 2002; Disney et al., 2004). 
Stability refers to the ability of a system to return to a steady-state after an interference 
whereas an unstable system will oscillate with a successively growing amplitude. A stable 
system can be further broken down into overdamped, underdamped and critically damped 
systems. An overdamped system reaches its steady-state without oscillations but slower 
than a critically damped system, which reaches the steady-state as quickly as possible. 
An underdamped system however reaches its steady-state only after oscillating for a while 
with a gradually decreasing amplitude (Aström & Murray, 2010). Also, unequal 
proportional controllers can lead to a stable system. Riddalls & Bennett (2002) state that 
the APIOPBCS model remains stable irrespective of the delay time as long as α𝑆𝑆𝑆𝑆  / α𝑠𝑠 > 
0.5. This finding shows that various combinations of proportional controller values can 
lead to a stable system although the costs incurred may differ between different 
combinations of proportional controllers.  

Studies have shown that Supply Line Underweighting can result in a bullwhip effect 
and may cause underdamped or locally unstable systems (Croson et al., 2014; Mosekilde 
& Laugesen, 2007). The DE-APIOBPCS policy not only guarantees a stable system, it 
also prevents oscillations in the order rate (Disney et al., 2004). This indicates either an 
overdamped or critically damped system. Oscillations in distribution chains are 
undesirable because they can lead to fluctuating inventory levels and periods with a higher 
stock level than desired but also a higher risk of stockouts (Riddalls & Bennett, 2002).  
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The performance in the Beer Distribution Game is measured by two types of costs: 
inventory and backlog costs. The characteristics of the DE-APIOBPCS policy to produce 
a stable system while avoiding oscillations leads to the hypotheses that matched 
proportional controllers (α𝑆𝑆𝑆𝑆 = α𝑆𝑆) result in a better performance, indicated by lower 
costs compared to a policy of Supply Line Underweighting (α𝑆𝑆𝑆𝑆 < α𝑆𝑆) in the Beer 
Distribution Game setting. 

 
Hypothesis 1: Given the restriction α𝑆𝑆𝑆𝑆 ≤  α𝑆𝑆, equally weighted proportional 

controllers result in the lowest accumulated costs over all stages in the Beer Distribution 
Game. 

Hypothesis 1 considers only cases of Supply Line Underweighting and equally 
weighted proportional controllers. As mentioned before, not only equal, but also unequal 
proportional controllers can lead to a stable system. The before mentioned stability 
criteria can also be met in case of α𝑆𝑆𝑆𝑆 >  α𝑆𝑆, which can be called Supply Line 
Overweighting. Consequently, it seems possible that there is a combination of 
proportional controllers which leads to a system that not only meets the stability criteria, 
but also incurs less costs compared to a system with equally weighted proportional 
controllers.  

Hypothesis 2: There is a constellation of the proportional controllers, which indicates 
Supply Line Overweighting (α𝑆𝑆𝑆𝑆 > α𝑆𝑆) and results in lower costs than the constellation 
of the optimally equal-weighted proportional controllers. 
 
Methodology and model structure 
A system dynamics model was used to test the hypotheses. This approach has been 
selected because of the high order of the non-linear difference equations (23rd order) 
which makes analytical analysis intractable (Sterman, 1989). Furthermore, the method 
makes the underlying dynamics of the system visible and ready for investigation. To run 
the simulations and generate valid data, a system dynamics models is needed which 
represents the Beer Distribution Game accordingly.  

The Beer Distribution Game reflects a distribution chain where four human players are 
assigned to stages representing a retailer, a distributor, a wholesaler and a factory. The 
players’ objective is to satisfy demand requests from an external customer to the lowest 
costs possible, whereby the customer’s demand is simulated by a deck of cards which -in 
the standard game set up- follows a pattern where demand is 4 units for the first 4 periods 
and steps up to 8 units in period 5 where it remains for the rest of the game. Order 
information flows upstream from the retailer to the factory and products flow downstream 
from the factory to the retailer. Until order information from one stage arrives at the 
subsequent stage, two time periods pass. The same delay of two time periods exists for 
the flow of products from one stage to the next one downstream. Both kinds of delay 
taken together result in a four-period delay from placing to receiving an order. The only 
exception is the factory, which gets its ordered products already after three periods. Costs 
are caused by holding inventory (i.e., $0.50 per case of beer per week) as well as by 
backlogging orders (i.e., $1 per case of beer per week) and are assessed at each stage of 
the supply chain (Sterman, 1989).  

A model which is based on the Beer Distribution Game outlined by Sterman (1989) 
has already been developed by Kirkwood (1998) based on the software tool Vensim. The 
stock and flow structure of this model is depicted in Figure 1.  
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To utilize this model for the testing of the proposed hypotheses, slight adjustments 

were necessary. For further analysis, the model was changed so that it incorporates the 
anchoring and adjustment heuristic listed in Equation 1 with the two proportional 
controllers α𝑆𝑆𝑆𝑆 and α𝑆𝑆. Additionally, the smoothing function of the forecasted expected 
loss rate was removed from the original model. Thus, the forecasted expected loss rate in 
the model used for investigation is solely based on the customer demand of the previous 
period, no smoothing method is applied. Therefore, Equation 2, which is used in the 
original model by Kirkwood (1998), was replaced by Equation 3 (because of the shorter 
acquisition lag of the factory, its order is only multiplied by 3 instead of 4). Besides these 
changes, the model remained unchanged in its basic structure. 

 
Equation (2): 
placed = MAX(0,SMOOTH(order,SMOOTHTIME)+A*(12-(Inventory-Backlog)-*SupplyL))  

 
Equation (3): 
placed = MAX(0,order+alphaS*(12-(Inventory-Backlog))+alphaSL*((order*4)-SupplyL)) 
 

Vensim’s built-in optimization module, which employs Powell’s conjugate direction 
method, was used to find the values of the proportional controllers α𝑆𝑆 and α𝑆𝑆𝑆𝑆 that 
minimize the cost function. The model does not discriminate between different stages 
when it comes to the proportional controllers, meaning that the proportional controllers 
of the retailer are equal to the proportional controllers of the wholesaler, distributor and 
factory. This simplification is also used by other authors when it comes to the calculation 
of the proportional controllers which are not computed for each single stage but as a mean 
value over all stages (Croson et al., 2014; Sterman, 1989). To investigate Hypothesis 1, 
the constraint α𝑆𝑆𝑆𝑆 ≤ α𝑆𝑆 was added and later, for the examination of Hypothesis 2, 
eliminated. This restriction was implemented in Vensim by introducing a variable which 
has a high value in case of α𝑆𝑆𝑆𝑆 > α𝑆𝑆 and a value of zero if α𝑆𝑆𝑆𝑆 ≤ α𝑆𝑆 and directly affects 
the cost function. Because minimizing costs is the objective, this variable prevents cases 
of α𝑆𝑆𝑆𝑆 >  α𝑆𝑆 as possible solutions as they result in prohibitively high costs. 

The initial values of the variables and parameters are set according to the Beer 
Distribution Game described by Sterman (1989). The model is initialized in equilibrium 
with 12 units in every singles stage’s inventory and 16 units in each stage’s supply line 
(12 in case of the factory). The desired inventory is fixed as in the APIOBPCS theory 
with a value of 12 as hypothesized by Sterman (1989). The modelling of a flexible desired 

 

Figure 1: System Dynamics model of the Beer Distribution Game 
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supply line level is also consistent with the APIOBPCS model; it is calculated by 
multiplying the lead time with the forecasted expected loss rate. Only the customer 
demand pattern traditionally used in the Beer Distribution Game (described above) was 
tested. The simulation length was set to 36 periods, corresponding to the game duration 
of real Beer Distribution Game runs (Sterman, 1989).  
 
Simulation results and interpretation 
First, Hypothesis 1 with the restriction α𝑆𝑆𝑆𝑆 ≤ α𝑆𝑆 was tested. The optimization module 
computes an optimal value of 0.024 for both proportional controllers implying that the 
expected loss rate should be adjusted by 2.4 % of the discrepancy between desired and 
actual supply line as well as 2.4 % of the discrepancy between desired and actual stock. 
Because of the equality of the proportional controllers, Hypothesis 1 is supported. 
Consequently, if assuming an anchoring and adjustment heuristic following the DE-
APIOBPCS (and therefore avoiding Supply Line Underweighting) leads to the lowest 
cost under the condition of α𝑆𝑆𝑆𝑆 ≤ α𝑆𝑆. This can also be visualized by performing a 
sensitivity analysis. To that end, the proportional controller for the stock was kept 
constant at the calculated optimal level of 0.024. The proportional controller for the 
supply line was altered, from a minimum value of 0.001 to a maximum value of 0.024 
with an increment of 0.001. Figure 2a shows the range of overall costs depending on the 
ratio of the two proportional controllers. Minimum costs associated with the DE-
APIOBPCS policy, hence matching proportional controllers (α𝑆𝑆𝑆𝑆 = α𝑆𝑆 = 0.024) are 581$. 
The highest costs of 713$ arise in case of maximum underweighting of the supply line 
(α𝑆𝑆𝑆𝑆 = 0.001; α𝑆𝑆 = 0.024). It is noteworthy that overall costs develop relatively similar 
till around period 20, regardless of the ratio of the control parameters. 
 

 Both relevant types of costs, backlog and inventory costs, are reflected in the net 
inventory which is calculated by subtracting the backlog from the stage’s inventory. If 
the net inventory is positive, the stage’s inventory level is higher than its backlog. In case 
of a negative net inventory, it is vice versa. The sum of all stages’ net inventories -the 
total net inventory- reflects whether the sum of all stages’ inventories is higher or lower 
than the sum of their backlogs. During the first four periods of constant customer demand, 
the total net inventory remained in its initialized equilibrium of 48 units. The increase in 
demand disturbs the initial state of equilibrium and decreases the total net inventory due 
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Figure 2: Sensitivity analysis 
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to the delay between the notification of a higher customer demand and the arrival of the 
replenishment order. Not only does this lead to depleted inventories throughout the supply 
chain but also to accumulated backlog, noticeable in the negativity of the total net 
inventory level (see Figure 3a).  
 

By analyzing the further progression of the total net inventory curve, a steady increase 
can be observed. The total net inventory in case of α𝑆𝑆𝑆𝑆 = α𝑆𝑆 =  0.024 turns positive again 
in week 28. The question remains if there is a combination of proportional controllers 
where the costs are even lower than in case of the optimally equal-weighted proportional 
controllers. Such a combination of proportional controllers could for example exist if it 
caused less backlog. At the same time, this combination must not produce higher costs 
for holding inventory than it saved for backlog costs. Because the range of α𝑆𝑆𝐿𝐿 ≤ α𝑆𝑆 has 
already been covered, the potentially improved ratio of the proportional controllers must 
be -if even existent-  in the area of α𝑆𝑆𝑆𝑆 > α𝑆𝑆. To cover this range and test Hypothesis 2, 
the restriction α𝑆𝑆𝑆𝑆 ≤ α𝑆𝑆 is eliminated in the following analysis. 

In case of abolishing the restriction α𝑆𝑆𝑆𝑆 ≤ α𝑆𝑆, Powell’s conjugate direction algorithm 
results in α𝑆𝑆𝑆𝑆 = 0.074 and α𝑆𝑆 = 0.025 as the values yielding the lowest costs after 36 
simulated periods. Costs in this case are 475$, which is ~18% less than the costs achieved 
with the DE-APIOBPCS policy. Hypothesis 2 is supported. This combination of 
proportional controllers leads, according to the beforementioned criteria of α𝑆𝑆𝑆𝑆 / α𝑠𝑠 > 0.5 
to a stable system. This finding could also be confirmed through longer simulation 
durations (> 200 periods).  

A sensitivity analysis provides clear evidence that overweighting the supply line can 
also be harmful (see Figure 2b). For this sensitivity analysis, α𝑆𝑆 was kept constant at the 
calculated optimal value of 0.025 and α𝑆𝑆𝑆𝑆  varied from 0.026 to 1. The proportional 
controller for the supply line is limited to a value of 1 due to greater clarity of the figure. 
On the one hand, the sensitivity analysis in Figure 2b indicates a superiority by 
overweighting the supply line in some cases, but on the other hand clearly shows that 
most of the cases with a ratio of α𝑆𝑆𝑆𝑆 > α𝑆𝑆 result in very high costs. The highest cost of 
24970$ is associated with the maximum overweighting allowed in this scenario which is 
α𝑆𝑆𝑆𝑆 = 1; α𝑆𝑆 = 0.025. It is important to bear in mind that the sensitivity analysis in case 
of Supply Line Overweighting covers a much wider range of proportional controllers 
(0.026 ≤ α𝑆𝑆𝑆𝑆 ≤ 1; α𝑆𝑆 = 0.025) than the sensitivity analysis in case of Supply Line 
Underweighting (0.001 ≤ α𝑆𝑆𝑆𝑆 ≤ 0.024; α𝑆𝑆 = 0.024).  

a) b) 

α𝑆𝑆𝑆𝑆 = 0.024; α𝑆𝑆 = 0.024 α𝑆𝑆𝑆𝑆 = 0.074; α𝑆𝑆 = 0.025 

Figure 3: Total net inventories of the optimized proportional controllers 
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 The comparison of total net inventories for the optimized proportional controllers with 
and without the restriction α𝑆𝑆𝑆𝑆 ≤  α𝑆𝑆 (Figure 3a and Figure 3b) shows that the recovery 
to the area of positive total net inventory after the demand shock is faster in case of 
overweighting the supply line. In case of overweighting the overall net inventory turns 
positive again in period 22, whereas it is not before period 28 in case of matching 
proportional controllers. Figure 3 also shows that the total net inventory remains slightly 
above zero for an extensive time span in case of Supply Line Overweighting, whereas the 
optimally equal-weighted proportional controllers lead to a smooth but steady increase in 
the total net inventory. 

As predicted by inventory and production control theory, a comparison of the order 
rates shows that there are no oscillations in case of equally weighted proportional 
controllers. However, in case of Supply Line Overweighting (α𝑆𝑆𝑆𝑆 = 0.074; α𝑆𝑆 = 0.025) 
oscillations in the order rate exist. This is exemplarily depicted for the retailer’s order rate 
in Figure 4. 
 

Conclusion  
This study showed that investigating an imbalanced consideration of a supply line with 
an inventory and production control theory perspective can lead to several new insights. 
Using the Beer Distribution Game, simulations demonstrated an inferiority of Supply 
Line Underweighting in terms of costs incurred to the discussed DE-APIOBPCS policy, 
which refers to an equal consideration of both proportional controllers. After taking 
Supply Line Overweighting into consideration, it turned out that slightly overweighting 
the supply line is beneficial in the given setting. Furthermore, the study demonstrated that 
small changes of the decision makers’ behavior can have a severe impact on the overall 
performance. 

Assuming it was possible to set any value for the proportional controller α𝑆𝑆 and let the 
players only decide about the proportional controller α𝑆𝑆𝑆𝑆, the question arises if it would 
be better to either (1) provide the value of α𝑆𝑆 = 0.025 and instruct individuals to 
overweight the supply line, or (2) to provide α𝑆𝑆 = 0.024 and instruct them to equally take 
the proportional controller α𝑆𝑆𝑆𝑆 into account for their order decisions. One could argue that 
decision makers should be steered in the direction of overweighting because 
overweighting the supply line leads to the lowest costs in the simulation. However, the 

α𝑆𝑆𝑆𝑆 = 0.074; α𝑆𝑆 = 0.025 

Figure 4: Order rates of the optimized proportional controllers 

α𝑆𝑆𝑆𝑆 = 0.024; α𝑆𝑆 = 0.024 
Time (week) 



9 
 

conducted sensitivity analysis clearly depicts that Supply Line Overweighting is only 
beneficial in very few cases regarding the studied demand pattern. Most often, Supply 
Line Overweighting leads to very high costs in the examined case. Another line of 
argumentation could be in favor of instructing decision makers towards an equally 
consideration of the proportional controllers, hence applying the DE-APIOBPCS policy. 
Even though this might not lead to the optimal performance, the DE-APIOBPCS has the 
great advantage to result in a stable system without oscillations in the order rate. This 
would also be beneficial for real companies because oscillating order rates inhibit 
efficient scheduling and production (Riddalls & Bennett, 2002).  

By comparing the simulation results to empirically observed data it is notable that the 
calculated optimal value of the proportional controller α𝑆𝑆𝑆𝑆 in case of Supply Line 
Overweighting (α𝑆𝑆𝑆𝑆 = 0.074) is very close to the value Sterman (1989) derived after 
statistically analyzing several runs of the Beer Distribution game (α𝑆𝑆𝑆𝑆 = 0.088). This 
might indicate that decision makers’ behavior regarding proportional controller α𝑆𝑆𝑆𝑆 is not 
as far off as one would initially assume. However, as the study showed, it is not a single 
proportional controller in isolation but the ratio of α𝑆𝑆𝑆𝑆 and α𝑆𝑆 which determines the 
overall costs. 

This study has several limitations. First, the system dynamics model used in the study 
assumes the same values for the proportional controllers throughout the supply chain. In 
real supply chains, the values of the proportional controllers probably differ from decision 
maker to decision maker. Second, the proportional controllers do not change during the 
simulation, whereas the proportional controllers could be dynamic. The system dynamics 
model allows for decimal digits, whereas in the real Beer Distribution Game decision 
makers can only place integer order quantities. Another simplification concerns the 
neglection of possible smoothing of the forecast. It is unlikely, that decision makers base 
their forecast of the customer demand solely on one period. In fact, it is more likely that 
they base their forecast on an (weighted) average of multiple previous periods.  

Future studies could test different demand patterns about optimal proportional 
controllers. Here, question such as: “Does selecting equal proportional controllers always 
result in lower costs than proportional controllers indicating Supply Line 
Underweighting?” and “Do proportional controllers indicating Supply Line 
Overweighting always lead to lower costs than the optimally equal-weighted proportional 
controllers?” could be of interest. Another important issue to address is the influence that 
Supply Line Overweighting has on the bullwhip effect. Because of the advantages of 
equally weighted proportional controllers regarding stability, it could also be of interest 
to investigate how decision makers can be incentivized to equally weight the two 
controllers. 
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