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Abstract 
 

This paper tests whether the effects of SCI on operations performance vary when different 

models are specified. Based on data from a survey of 348 Thai manufacturers, four 

models were tested using multiple regressions, structural question modelling and latent 

class analysis. Each SCI dimension (supplier, internal and customer integration) and its 

higher-order SCI construct are significantly and positively associated with all operational 

performance dimensions. With interaction terms added, the effects of SCI dimensions 

become insignificant and the signs turned negative. The latent class analysis classes with 

lower SCI strength had more number of positive performance links. 
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Introduction 

An urban legend is something being widely accepted without question. For theory testing 

research, model specification is a crucial but least understood process (MacCallum, 1995; 

Allen, 1997). Inappropriate model specification could lead to mis-interpretation of 

findings. A model is over-specified when variables not in the true model are included in 

the formulated model and under-specified when independent variables in the true model 

not being included in the formulated model; and regression results will be biased 

especially when multi-collinearity exists (Deegan Jr. 1976). Moreover, most empirical 

articles published in Operations Management (OM) journals examine only a single 

model. If such a model has acceptable p value, fit index and most hypotheses are being 

accepted, the findings are thought to be valid. We seldomly ask whether there are alternate 

and yet theoretically plausible models, models that fit the data better, or missing variables 

that could better explain the phenomenon.  

Despite the large volumes of published theory-testing studies on supply chain 

integration (SCI), little question is asked whether the model specifications that include 

the three common dimensions of SCI (i.e., internal, supplier and customer integration) 

would lead to over or under estimation of their effects. Effect estimations could be 
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affected by multi-collinearity between these SCI dimensions (as they share a similar 

domain i.e., integration), their interaction effects, model specification bias, endogeneity 

issues, and so on. Using the same dataset, this paper tests whether the use of different 

models can result in different performance effects three SCI dimensions. 

 

Literature review 

Model specification involves the determination of independent variables to be included 

in or excluded from a regression or structural equation. A model is often specified 

primarily based on theoretical considerations instead of empirical or methodological 

ones. Two basic types of specification errors can mislead interpretations. A model is mis-

specified when an independent variable that is theoretically irrelevant is being included 

or when an independent variable that is theoretically relevant is being excluded. 

Based on a search in ABI/INFORM database of peer-reviewed journals with a title 

including “Operations” (February 2018), we found 91 articles that discuss “model 

specification*”. These journals include Annals of Operations Research (22), 

Manufacturing & Service Operations Management (21), International Journal of 

Operations & Production Management (17), Production & Operations Management (15), 

Operations Research (9) and six other journals (7), including Journal of Operations 

Management (1). Here we summarize some key findings: 

• Different model specifications could lead to different interpretations. For example, 

De Giovanni and Vinzi (2012) shows the use of different measurement model 

specification (use of formative versus reflective scales) could lead to different 

conclusions about the effects of independent variables;  

• Some studies used theoretical foundation or hypothesis to specify models for 

testing, especially when independent variables are related to each other. For 

example, arguing that different operational practices could have either additive or 

compensatory effects, two models, one based on average value of the practices and 

another based on a threshold value, are tested (Wu et al., 2012);  

• The chosen analytical methods could adequately examine the adequacy of model 

specification and detect any violation of assumptions (Leachman et al., 2005);  

• When samples are divided into sub-groups (typically to test the effect of a 

moderator), some studies examined whether the separation of the samples has any 

influence on the discriminative power of the different models and on interpretations 

of the results from different models (see examples in Gröβler et al., 2006);  

• Issues e.g., multi-collinearity, sample selection bias, endogeneity are seldom 

discussed.   

 

Supply chain integration (SCI) broadly means the strategic collaboration in both intra-

organizational and inter-organizational processes (Flynn et al., 2010). SCI is 

multidimensional variable (Flynn et al., 2010); it involves information sharing, 

cooperation, partnership, and collaboration across functions, strategic partnership, 

planning, and joint product development with suppliers and customers (Lai et al., 2010; 

Ragatz et al., 2002). SCI is further divided into three dimensions: internal integration (II), 

supplier integration (SI), and customer integration (CI). II involves intra-organizational 

collaboration across the product design, procurement, production, sales, and distribution 

functions to meet customer requirements at lower total system cost (Morash et al., 1997).  

Figure 1 shows empirical SCI theory-testing studies apply different model 

specifications (Germain and Iyer, 2006). A common assumption is that operational 

performance is linearly associated with the strengths of SCI or individual SCI dimensions 
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(i.e., SI, II, CI). Many studies based on regression or structural equation models to 

examine the effects of individual SCI dimensions separately; these models are labelled 

Model 1 and called the “individual effect model” (Germain and Iyer, 2006). Instead, 

Model 2 examines the effects of aggregated SCI dimensions or higher-order SCI. Model 

2 is labelled as “unified integration model” (Germain and Iyer, 2006). Model 3 is created 

when Model 1 is extended by including the interaction effects of SCI dimensions. Model 

3 is labelled “interactive model” by Germain Iyer (2006), who stressed the importance of 

incorporating interaction effects into individual effect model. Model 3 is often used to 

test models grounded in the contingency theory (e.g., Flynn et al. 2010), which argues the 

relationship between internal integration and performance can be moderated by supplier 

and customer integration. Model 4 is labelled as “configuration model” is used by studies 

that applied quartile or cluster analysis to examine the effects SCI in specific 

configurations or arcs of integration (Model 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 - Four specifications of SCI model 

 

Model 1: models based on individual SCI dimensions. While collectively there are 

plenty of positive evidence in the literature (see meta-analysis of Leuschner et al., 2013 

and Mackelprang et al., 2014), only few studies reported that the strengths of all three 

SCI dimensions are associated with delivery, cost, quality and flexibility performance 

(Rosenzweig et al., 2003, Wong et al., 2011). The work of Wong et al. (2011) has 

particularly reported relatively high R2 for the relationships between all the three SCI 

dimensions and four operational performance outcomes. However, the use of separate 

structural models for each SCI by such studies could possibly lead to errors in effect sizes 

because the effect of one SCI dimension on another is not being accounted for. A recent 

meta-analysis of 34 articles reveals “integration [strength] is not universally associated 
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with improved performance” and “no type [dimension] of integration resulted in notably 

more or less significant relationships than other forms of integration” (Mackelprang et 

al., 2014: 82). Perhaps the strength of integration is not a consistent or strong predictor. 

Fabbe-Costes and Jahre (2008) show that more SCI does not always lead to better 

performance, and they question if the SCI-performance relationship could be curvilinear. 

Model 2: model based on higher-order SCI constructs. Very few studies have 

examined the aggregated effects of SCI by considering SCI as a higher-order 

multidimensional constructs. Rosenzweig et al. (2003) shown that SCI intensity (as an 

aggregated SCI construct measured in terms of internal, supplier, customer and 

distributor/retailer integration) was significantly associated with delivery reliability, 

quality, cost and process flexibility.  

Model 3: model based on a contingency perspective (interaction effects). Mackelprang 

et al. (2014) point out that 63% of the integration-performance relationships they 

evaluated are subjected to unknown moderating factors. The work of Wong et al. (2011) 

reveals two contingencies by dividing operational performance into time-based versus 

non-time-based, which help differentiate the moderating effects of environmental 

uncertainty on the relationships between internal versus external integration. Other 

moderators such as supply complexity and competitive strategy may explain why SCI 

performance varies. Another contingency perspective concerns the interactions between 

SCI dimensions (Flynn et al., 2010). However, there is no agreement which SCI 

dimension should act as moderators. Some argues II and others suggest SI and CI, as the 

moderators. Dröge et al. (2004) found that internal integration moderated the effect of 

external integration on performance. Devaraj et al. (2007) found that CI moderated the 

relationship between SI and performance. Instead, Flynn et al. (2010) show that the 

interactions between CI and SI had no effect on the relationships between II and 

performance (i.e., operational and business). New evidence provided by Schoenherr and 

Swink (2012) indicates that the relationships between external integration (SI and CI) and 

performance (i.e., delivery and flexibility) are moderated by II. Apparently, the empirical 

evidence and such a contingency theory do not add up.  

Model 4: Models based on a configuration or arcs of integration perspective. This 

perspective argues that it is the specific “configurations” of SCI dimensions or “arcs” of 

integration that explain performance (Frohlich and Westbrook, 2001; Flynn et al., 2010; 

Schoenherr and Swink, 2012). Such studies often use ANOVA analysis to compare the 

performance of different clusters of firms identified by quartile or cluster analysis. They 

conclude that firms with greater SCI strengths and wider arcs of integration outperform 

others. Particularly, firms with “high-uniform” (high SI, II and CI) and “outward-facing” 

(high SI and CI) and “forward-facing” or “customer-leaning” (high CI) have achieved 

better performance (Flynn et al., 2010; Frohlich and Westbrook, 2001; Schoenherr and 

Swink, 2012). However, owing to the limitation of ANOVA analysis such findings cannot 

tell us whether it is the SCI configuration, strength, interaction or other factors that have 

affected performance. The configuration theory of Flynn et al. (2010) argues it is the “fits” 

among SCI configurations and the environment but such fits have not been empirically 

examined. We therefore still cannot fully understand how specific SCI configurations or 

arcs of integration create performance. 

 

Methodology 

Sampling and data collection 

A survey questionnaire distributed across the automotive, electronics and food industries 

in Thailand was conducted. These industries are highly diverse and heterogeneous, 
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spanning manufacturers of different structural characteristics and competitive 

environments in Thailand. They play a major role in terms of Thailand’s gross domestic 

product (GDP). We adopt measurement items from the existing literature to draft a 

questionnaire to improve the validity and reliability of the scales. The questionnaire was 

pre-tested by industry representatives and academics specialised in supply chain 

management (SCM), who suggested minor amendments to the wordings before it was 

distributed for data collection. This step ensured that the items were clear and providing 

face validity for the variables examined.  

The entire population of 1,859 Thai manufacturing firms from the three industries was 

identified. A wide range of respondents were included. The respondents comprised of 

plant managers, CEOs, presidents, vice presidents, and directors. To identify respondents 

who had intimate knowledge of supply chain management, we retained only the samples 

of firms that manage their own supply chain. For these selected 1708 firms, the survey 

was separately sent to 746, 426, and 536 potential respondents from the automotive, 

electronics, and food industries, respectively. The responding firms consist of 

manufacturing suppliers and OEMs firms located in Thailand. The final number of 

completed and usable responses from the automotive industry was 151, indicating a 

response rate of 20.85%. The electronics industry survey yielded 82 usable responses 

(19% response rate). The food industry survey received 115 usable responses (21% 

response rate). This is close to the recommended minimum of 20% for empirical studies 

in operations management research. 

Due to the use of single informants, common method variance was examined in two 

manners. Harman’s one-factor tests show that no single factor was accounted for most of 

the covariance. Each independent and dependent variable loaded on different factors with 

the first factor accounting for less than 40% of the total variance. Next, suggestion, we 

used firm ownership as a marker variable (proxy) because it is theoretically unrelated to 

at least one of the variables. Ownership was insignificantly related to most variables (6 

out of 8 pairs are insignificant), as shown in Table 1.  

 
Table 1 - Mean, standard deviations, and correlations 

Variables Mean S.D. II SI CI D PC PQ PF 

Internal integration (II) 3.84 .68        

Supplier integration (SI) 3.66 .67 .49**       

Customer integration (CI) 3.79 .73 .57** .61**      

Delivery (D) 4.12 .65 .45** .38** .32**     

Production cost (PC) 3.28 .68 .32** .34** .24** .36**    

Product quality (PQ) 4.13 .62 .44** .41** .36** .54** .37**   

Production flexibility (PF) 3.74 .67 .28** .30** .30** .30** .44** .38**  

Product innovation (PI) 3.70 .71 .26** .27** .34** .20** .25** .38** .43** 

Firm ownership§ 1.76 .86 -.01 .38 .08 .12* -.08 .16** -.01 

Note: § Marker variable; * P<0.05; ** P<0.01; 2-tailed test 

 

Non-respondent bias is assessed by identifying any significant differences between 

early and late respondents for each industry. At the 0.05 significance level, analysis of 

variance (ANOVA) tests indicate no significant differences in terms of demographic 

characteristics and variables between the early and late respondents for each industry. 

 

Scale development and validation 

We adopted measurement scales from the existing literature. Internal integration 

measures how much firms integrate internally across functions (Flynn et al., 2010). Scales 

for supplier and customer integration were adopted from Wong et al. (2011) and Flynn et 
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al. (2010). We also adopted measurement scales for delivery, product quality, and 

production cost, production flexibility (Wong et al. 2011), and product innovation 

(Rosenzweig et al., 2003). All these scales are measured at plant level. A five-point Likert 

scale was used: a higher value indicates a higher level of integration and achievement in 

performance. (1= very low and 5= very high).  

Confirmatory factor analysis (CFA) is used to test construct validity. The CFA results 

for the measures show that all measurement models have acceptable fit indices. All fit 

indices are well above the recommended values. Cronbach’s Alpha and composite 

reliability of all the variables are greater than the recommended threshold of 0.70, 

suggesting reliability of the measurement scales for each variable. Convergent validity 

was assessed as follows. First, all indicators in their respective variables are statistically 

significant (p < 0.05) with factor loadings from 0.44 to 0.90, which suggests convergent 

validity of the theoretical variables. Furthermore, the average variance extracted (AVE) 

of each variable exceeds the recommended minimum value of 0.5. Discriminant validity 

of the variables is assessed by conducting a series of chi-square difference tests using 

nested confirmatory factor analysis (CFA) for all pairs of variables. The results show that 

all chi-square differences between each pair of variables are highly significant (e.g., 

internal integration vs. supplier integration, Δχ2 = 73.91, p < 0.001), suggesting 

discriminant validity of the variables. The square roots of AVE of all variables are greater 

than the correlation between any of the pairs, indicating discriminant validity. 

Lastly, we confirm the data is normally distributed by examining the skewness and 

kurtosis of each variable. The results suggest that the statistics of skewness and kurtosis 

of each variable is within the range of -2 and +2, with an average -.39 skewness and .25 

kurtosis. The results suggest that the data is normal univariate distribution, indicating that 

the data is suitable for parametric statistics. 

 

Findings 

Model 1 (individual effect model) is assessed by three structural models (SEM) linking 

each SCI dimensions (i.e., SI, II, and CI) independently with the performance dimensions, 

without interactions among them. Table 2 shows all three SCI dimensions have 

significant (p< 0.001) and positive associations with all performance outcomes, with high 

standardized estimates (from 0.42 to 0.70) and R2 (0.18 to 0.49).  

 
Table 2 - SEM results for SCI dimensions (Model 1) and SCI (Model 2) 

Dependent variable 

(DV) 

Independent variable (IV) 

 II  SI  CI  SCI 

Cost (PC) .55*** (.30) .57*** (.32) .46*** (.21) .56*** (.31) 

Flexibility (PF) .51*** (.26) .56*** (.31) .55*** (.30) .58*** (.34) 

Product innovation (PI) .42*** (.18) .43*** (.19) .50*** (.25) .48*** (.23) 

Delivery (D) .68*** (.46) .62*** (.38) .54*** (.29) .67*** (.4) 

Quality (PQ) .70*** (.49) .67*** (.44) .60*** (.35) .71*** (.41) 

Model fits:  

SEM 1 for II: χ2 = 691.51, df = 290, p < .00; CFI =.92; IFI = .92; TLI =.91; RMR =.06 

SEM 2 for SI: χ2 = 718.20, df = 316, p < .00; CFI =.92; IFI = .92; TLI =.92; RMR =.06 

SEM3 for CI: χ2 = 785.34, df = 316, p < .00; CFI =.91; IFI = .91; TLI =.90; RMR =.06 

SEM4 for SCI: χ2 = 1234.63, df = 584, p < .00; CFI =.90; IFI = .90; TLI =.90; RMR =.05  

Note: * p<0.05; ** p<0.01; *** p < 0.001 

  

To test Model 2 (unified integrative model), we established another structural model 

(SEM) to test associations between a second-order SCI (consider SI, II, and CI as the 
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first-order construct) with performance dimensions. Table 2 shows SCI as the second-

order construct is positively associated (p< 0.001) with all the performance outcomes, 

with standardized estimates (from 0.48 to 0.71) and R2 (0.23 to 0.51).  

Model 3 (interactive model) is assessed by hierarchical regression for each 

performance dimension, including all the three SCI dimensions and their interactions as 

follows: performance (PQ, PC, PF, D, PI) = constant + SI + II + CI + interaction terms. 

The results are summarized (see details in the Appendix) here:  

• Internal integration (II): Before adding interaction terms, there are significant and 

positive associations between II and PQ, PC and D; and there are insignificant and 

positive associations between II on PF and PI. The signs became negative and some 

significant paths become insignificant after interaction terms are added; 

• Supplier integration (SI): When SI is first entered to the regression, there are 

significant and positive associations between SI and all five performance outcomes. 

When CI is entered some significant paths turned insignificant. When interaction 

terms are added, all positive paths become negative, some of which become non-

significant; 

• Customer integration (CI): Before entering the interaction terms, CI is significantly 

and positively associated with PQ, PF and PI. When interaction terms are added, all 

positive paths become negative, some of which become non-significant; 

• Interaction terms: While all positive paths between SCI dimensions and 

performance outcomes turned negative, there are some positive and significant 

associations between some interaction terms and performance.  

Model 4 is assessed by latent class modelling. Unlike cluster analysis, latent class 

analysis is a model-based approach that uses maximum-likelihood to estimate parameters 

and it maximizes cluster problems using a log-likelihood function. This method allows 

us to perform regression on each class (arc of integration) to ascertain the origins of the 

performance of each integration strategy. Latent class modelling was used to account 

simultaneously for both the similarity and differences between firms in terms of their 

levels of internal, supplier, and customer integration. It allows us to address alternative 

model structure in terms of different parameter estimates, and the extent to which an 

estimated model applies to a specific firm by the estimation of posterior probabilities that 

a specific firm falls into a class for which the model is statistically appropriate.  

 
Table 3 - Latent class model selection (Model 3) 

Model AIC BIC aBIC Entropy 

2 classes 34221.867 34653.313 34298.013 0.908 

3 classes 33639.870 34217.701 33741.852 0.925 

4 classes 33094.794 33819.008 33222.612 0.946 

5 classes 32811.257 33681.855 32964.910 0.948 

Note: AIC = Akaike Information Criterion; BIC = Bayes Information Criterion; aBIC = 

adjusted Bayesian Information Criterion 

 

Consistent with other clustering approach, latent class modelling to determine the 

clusters of firms are determined by theory and the meaningfulness and significance 

differences. The literature suggests no single criterion for choosing the number of classes 

and the literature suggests the use of several criteria to determine the number of classes. 

First, the log-likelihood-based model selection criteria (i.e., AIC, BIC and aBIC), which 
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is considered a conservative approach, is used to determine the number of classes. The 

decreasing numbers of the AIC, BIC, and aBIC indicates a better and more parsimonious 

model when more classes were added, as shown in Table 3. These criteria and entropy 

scores suggest a five-class solution as the best classification. Table 4 summarizes the 

latent class mean values, from lowest to highest SCI dimensions. In addition, we run 

regression for each latent class, considering all SCI dimensions and their interaction 

terms. Surprisingly, there are more significant associations between SCI dimensions and 

performance for clusters with lower SCI strengths. 

 
Table 4 - Latent class mean values and regression results (Model 3) 

 Class 1  

(n=38) 

Class 3  

(n=60) 

Class 4  

(n=53) 

Class 2 

(n=119) 

Class 5 

(n=78) 

SI 3.04 2.96 3.55 3.86 4.31 

II 3.13 3.20 3.98 3.98 4.49 

CI 3.20 2.95 3.61 4.08 4.38 

Regression results 

Number of 

significant 

paths 

5 7 2 3 2 

With PQ II*; SIxCI*; 

SIxII* 

II* None None II* 

With PC None None None None IIxCI* 

With PF II***; SIxII** None SIxII* SI* None 

With D None II***; SI* None - None 

With PI None CI***; SI***; 

SIxII**; 

SIxCI*** 

IIxCI** SI*; SIxII* None 

Note: * P<0.05; ** P<0.01; < 0.001 

 

Discussion and conclusion  
This paper shows that the significant and positive associations between SCI dimensions 

(and second-order SCI) and performance reported by Models 1 and 2 could be over-

estimated and even lead to false positive. Models 1 and 2 are not the true model because 

interactions among SCI dimensions are not considered. Models 3 and 4 show that SCI 

dimensions interact in both trade-off and synergetic manners; but these models cannot 

fully reveal such behaviours. There may be some multi-collinearity between SCI 

dimensions. Models 1 and 2 cannot clarify the different roles of SCI dimensions and their 

interactions. Model 3 shows clusters of firms with high SCI strength do not necessary 

achieve high operational performance through SCI dimensions and their interactions. 

Some variables that could affect operations performance are missing in such models 

(other variables that might affect performance). Model 4 shows there are inconsistent and 

spurious interactions between SCI dimensions. These findings suggest alternate model 

specifications and theoretical foundation to truly understand the effects of SCI. It is theory 

that drives correct model specification but popular theories e.g., RBV and relational-

based view are inadequate for explaining distinct and joint effects of SCI dimensions. 
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Appendix - Multiple regression results (Model 3) 

 
M Variables PQ PC PF D PI 

 t Tolera

nce 

VIF R2 R2  t Tol

eran

ce 

VIF R2 R2  t R2 R2  t R2 R2  t R2 R2 

1 Constant 

II 

2.494 

.413 

9.653*** 

60.97*** 

1.00 1.00 .200 - 2.001 

.325 

7.138*** 

4.421*** 

1.00 1.00 .116 - 2.850 

.231 

9.503*** 

2.944** 

0.055 - 2.361 

.434 

8.627*** 

6.053*** 

.197 - 2.648 

.279 

8.451*** 

3.396*** 

.072 - 

2 Constant  

II 

SI 

1.923 

.269 

.302 

6.818*** 

3.681*** 

4.107*** 

 

.76 

.76 

 

1.32 

1.32 

.282 .082 1.468 

.191 

.283 

4.725*** 

2.365* 

3.491*** 

 

.76 

.76 

 

1.32 

1.32 

.183 .067 2.445 

.129 

.214 

7.213*** 

1.473 

2.428* 

0.091 .036 1.865 

.309 

.263 

6.128*** 

3.919*** 

3.309*** 

.253 .056 2.107 

.143 

.287 

6.025*** 

1.574 

3.145** 

.130 .058 

3 Constant  

II 

SI 

CI 

1.791 

.208 

.228 

.166 

6.212*** 

2.620** 

2.760** 

1.882* 

 

.638 

.603 

.534 

 

1.57 

1.66 

1.87 

.298 .016 1.398 

.158 

.244 

.088 

4.361*** 

1.790* 

2.649** 

.900 

 

.638 

.603 

.534 

 

1.57 

1.66 

1.87 

.188 .005 2.259 

.043 

.111 

.234 

6.549*** 

.455 

1.117 

2.221* 

0.121 .003 1.856 

.305 

.257 

.012 

5.895*** 

3.516*** 

2.848** 

.122 

.253 .000 1.837 

.018 

.136 

.340 

5.249*** 

.184 

1.356 

3.172** 

.186 .056 

4 Constant  

II 

SI 

CI 

II x SI  

II x CI 

SI x CI 

3.638 

-.899 

.398 

.073 

.113 

.189 

-.160 

2.394* 

-2.052* 

.814 

.167 

.927* 

2.046* 

-1.679 

 

.019 

.020 

.020 

.006 

.010 

.010 

 

51.68 

48.92 

49.81 

156.14 

99.54 

97.93 

 

.338 .040 3.372 

-.302 

-.199 

-.106 

.089 

.034 

.026 

1.949* 

-.606 

-.358 

-.213 

.646 

.322 

.242 

  .196 .008 5.129 

-.488 

-.114 

-.628 

-.028 

.174 

.076 

2.781** 

-.917 

-.192 

-1.181 

-.189 

1.552 

.657 

0.146 .025 3.077 

-.005 

-.452 

.372 

.185 

-.107 

.009 

1.815* 

-.009 

-.829 

.761 

1.637 

-1.035 

.087 

.264 .011 5.980 

1.157 

-.049 

-.630 

.037 

.284 

-.002 

2.357*** 

-2.184* 

-.083 

-1.190 

.254* 

2.544 

-.013 

.239 .053 

5 Constant  

II 

SI 

CI 

II x SI 

II x CI 

SI x CI 

II x SI x 

CI 

14.95

3 

-4.150 

-2.933 

-3.041 

1.057 

1.072 

.741 

-.252 

2.644** 

-2.554* 

-1.750* 

-1.947* 

2.246* 

2.463* 

1.667* 

-2.075* 

 

.002 

.002 

.002 

.001 

.001 

.001 

.000 

 

468.22 

480.67 

492.28 

1608.7 

1528.68 

1578.43 

3258.70 

.338 .000 5.414 

-.889 

-.800 

-669 

.260 

.193 

.189 

-.046 

.809 

-.474 

-.413 

-.370 

.478 

.384 

.368 

-.324 

  .196 .000 18.962 

-4.462 

-4.185 

-4.436 

1.127 

1.254 

1.178 

-.309 

2.763* 

-2.263* 

-2.058* 

-2.340* 

1.973* 

2.237* 

2.184* 

-2.091* 

0.171 .025 14.915 

-3.405 

-3.936 

-2.886 

1.173 

.807 

.952 

-.264 

2.360* 

-1.875* 

-2.101* 

-1.653* 

1.680* 

2.230* 

1.917* 

-1.943* 

.283 .019 22.877 

-6.011 

-5.022 

-5.281 

1.448 

1.603 

1.344 

-.377 

3.375*** 

-3.086* 

-2.500** 

-2.820* 

2.566** 

3.072* 

2.524* 

-2.585* 

.273 .034 

*** p<0.001; ** P<0.01; * p<0.1 
 


