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Abstract 
 

The aim of this paper is to investigate efficiency gains from collaborative logistics in 
grocery last mile distribution. Using simulation and mathematical modelling we 
estimate the demand for home deliveries of groceries purchased online and investigate 

collaboration in the stem mile without and with four-hour time windows as well as the 
last mile distribution with one-hour time windows. Distance reduction owing to 

collaboration is 9% for the stem mile, 11% for the stem mile with four-hour time 
windows, and 23% for the last mile. We present detailed results on two scenarios: 
collaboration among two and three retailers. 
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Introduction 

Managing urban areas has become one of the most significant development challenges 
of the 21st century with an urban population having grown from 746 million in 1950 to 

3.9 billion in 2014. Considering that the world’s population in 2050 is projected to be 
66% urban (UN, 2015) with 41 mega-cities having more than 10 million inhabitants by 
2030, urgent attention on urban planning is required for easy access to education, 

healthcare, infrastructure and services. Transport is a key aspect of the smooth 
functioning of city life; especially urban freight transport with a significant impact on 

the quality of life in urban environments through traffic congestion, vehicle emissions, 
and noise pollution (Nathanail, Adamos, & Gogas, 2017).  

Increased urbanisation has led to more people living in cities and therefore an 

increased demand for not only food products but also all goods to be transported to and 
distributed inside urban areas. The developments in information and communication 

technologies and the Internet have enabled new convenience services such as online 
shopping, using desktop computers and more recently mobile devices. Books, fashion 
items, flight tickets, and hotel bookings are the most frequently purchased goods and 

services over the Internet and the food sector have also benefited from increasing e-
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commerce. Retailers in many countries have made grocery purchase a service available 

to consumers online, at their convenience. Especially cash-rich, time-poor city dwellers 
have demonstrated a growing preference for shopping their groceries online and 

demanding their groceries to be delivered to their homes on their preferred day and 
time. 

UK online grocery sector has seen a growth of 14.7% in 2016 reaching a market size 

of £9.992 billion (Mintel, 2017). Major retailers such as Tesco, Sainsbury’s, Ocado, or 
Asda operate their own vehicle fleets to fulfil the home delivery demand from 

consumers. Due to the nature of the service, multiple and uncoordinated vehicles visit 
the same location at around the same time, increasing last mile distribution costs as well 
as the negative impact on the environment. An increased number of delivery vans also 

pose a societal challenge in terms of increasing traffic congestion and noise pollution as 
well as increasing likelihood of road accidents. The aim of this paper is to investigate 

efficiency gains from collaborative logistics in grocery last mile distribution under 
plausible collaboration scenarios. 

To address this demand, retailers have developed their own logistics operation and 

have avoided collaborating with other retailers despite possible benefits such as cost 
savings from consolidating freight (Lozano, Moreno, Adenso-Díaz, & Algaba, 2013).  

A co-opetition model in the Austrian grocery industry shows that all parties improve 
their profitability by sharing information and setting up business with value-adding 
partnerships proving that competition and collaboration can occur at the same time, 

even in the very competition-intense atmosphere of the grocery industry (Kotzab & 
Teller, 2003).  

To extend our current knowledge of grocery logistics, we focus our work on the UK 
online grocery retail market and analyse existing urban distribution models. Due to its 
competitive nature, there is little logistics collaboration in this market, missing an 

opportunity to realise financial, operational, environmental or social benefits. The 
purpose of this paper is to propose collaborative logistics models for stem mile and last 

mile grocery distribution illustrating benefits in distance reduction across multiple 
scenarios.  

 

Literature Review 

The grocery retail sector in the UK is known for its severe competition (Hackney, 

Grant, & Birtwistle, 2006) where major retailers invest large sums in the online channel 
more than they did two decades ago. On the other hand, the sustainability of distribution 
operation is yet to be established for home deliveries of groceries bought via the online 

channel. This is mainly due to the high impact of the online channel on the physical 
network that fulfils the service demand together with stringent service parameters such 

as one-hour delivery windows and booking of deliveries in advance. Like other online 
retail services, online grocery purchase and the subsequent home delivery service 
change consumers’ shopping habits. Convenience comes at an economic, 

environmental, and social cost in the form of higher prices, increasing CO2 emissions, 
and additional congestion on the roads. This new way of shopping groceries affects 

online grocery retail revenue models as well as carbon emissions in the last mile 
distribution due to increased convenience through two dominant models in the market: 
pay-per-order and subscription-based delivery service (Belavina, Girotra, & Kabra, 

2017). 
Numerous factors such as drop density, distance, and vehicle type affect the 

emissions from home delivery services. Emissions from the average shopping trip of a 
consumer, particularly by private car, can be greater than emissions from all upstream 
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logistical activities (Edwards, McKinnon, & Cullinane, 2010). On the other hand, 

emissions from delivery vans can be reduced if it is possible to combine the deliveries 
over spatially and temporally comparable grocery orders. In that respect, a classic 

combinatorial optimisation problem, vehicle routing, has become a key aspect of 
managing distribution operations (Wei, Zhang, Zhang, & Leung, 2017).  

The vehicle routing problem (VRP) domain is rich with many extensions including 

but not limited to capacitated VRP, VRP with time windows, or VRP with pickup and 
deliveries. VRP is a generalisation of the travelling salesperson problem (TSP) where 

the number of destinations visited is also a function of the vehicle capacity (Dantzig & 
Ramser, 1959). On the other hand, TSP determines the shortest route that passes 𝑛 

locations, only once. When each pair of locations are linked, the total number of routes 
through 𝑛 locations is 1/2 × 𝑛!; a number that grows very large and very fast: the total 

number of possible routes for 10 locations is 1,814,400. TSP is generalised to VRP by 
imposing capacity constraints that are smaller than the total demand of all locations to 

be visited. In that case, multiple vehicles are needed to satisfy the total demand in the 
service area. 

In fact, the retailer’s physical network characterised by the density, size, and location 

of stores affects not only operating costs but also environmental costs (Cachon, 2014). It 
has been a long debate whether consumers’ travelling to stores causes higher carbon 

emissions than retailers’ delivering orders to consumers’ homes. The answer is not 
straightforward as it is affected by not only the store network, but also the shopping 
preferences and the shopping frequency of consumers. The store network could 

comprise few and far away stores where the journey to the store takes a significant 
travel distance and time or many and nearby stores where the shopping trips are shorter. 

Consumers may perceive shopping as a leisure time activity and allocate several hours 
of travel and shopping time on a regular basis or as a chore that has to be done quickly 
and at minimum cost.  

Currently online grocery retail firms do not actively engage in anticipating, 
experimenting, or determining which consumer expectations might result in a 

competitive advantage (de Kervenoael, Yanık, Bozkaya, Palmer, & Hallsworth, 2016), 
consequently preventing them from considering logistics service as an integral element 
of their value-added service. This is the gap we are addressing in this paper by showing 

theoretical gains from logistics sharing whilst competing in other core parts of the 
business. 

 
Methodology 

We present the conceptualisation of the online grocery distribution in Figure 1 with 

three collaborative logistics models:   
i) Business Model 1: shared vehicles for last mile (i.e. the distance travelled 

from a local hub to a consumer’s residence),  
ii) Business Model 2: shared vehicles for stem mile (i.e. the distance travelled 

from a picking location to a local hub),  

iii)  Business Model 3: shared vehicles for stem mile based on time windows 
(four time intervals: A) 8:00-11:59, B) 12:00-15:59, C) 16:00-19:59 and D) 

20:00-23:59). Based on the primary data set and a survey, we generated the 
demand for grocery deliveries using the following ratios: 19.7% for time 
window A, 20.6% for time window B, 36.8% for time window C and 22.8% 

for time window D.  
We propose using micro hubs located in residential areas as a cross-docking facility 

for the last mile distribution or as a short-term (maximum four hours) storage facility 
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for click and collect services. Large flows from picking locations of retailers are 

transported to micro-hubs in residential areas, and then the last mile distribution is 
performed in line with promised time windows. Three flows conceptualised in the UK 

Pilot are: 1) large flows from picking locations to micro-hubs, 2) small flows from 
micro-hubs to consumers’ addresses with time window constraints, and 3) small flows 
with space and time window constraints where consumers collect their orders. 

 

 
Figure 1 – Logistics Flows in Home Deliveries of Groceries 

 

In modelling the grocery last mile distribution, we have an integrated two stage 
methodology to test the potential benefits of collaboration: demand estimation and 
capacitated vehicle routing problem. In the demand estimation stage, we generate daily 

grocery orders to be delivered in postcode sectors of London. In the second stage with 
the capacitated vehicle routing problem, we solve the daily grocery order delivery 

problem with the minimum distance in the objective function. We design experiments 
based on vehicle capacity (four capacities tested) and picking location (two locations 
tested) and logistics operation (independent and collaborative) among two or three 

hypothetical retailers, the data of which are informed by both primary and secondary 
data. 

Our work is informed by primary data from an online grocery retailer (Retailer R) 
operating in London. The data is a summary of the average number of orders per 
postcode over one year. Specifically, it includes 346,745 transactions from 01/06/2014 

to 31/05/2015 and shows the daily distribution of grocery orders and peaks on Fridays 
and Mondays. Since this is the only primary data, we use secondary data from 

publications, reports, and websites of retailers as explained in Table 1 to design an 
analysis framework with the same spatiotemporal data from more than one retailer that 
can demonstrate the likely benefits such as distance and delivery time reduction owing 

to logistics collaboration. 
 

Table 1 – Data and Sources Used in This Paper 

Data Source 

UK Online Grocery Market Size and 
Share  

Mintel 

Average basket size Retailers’ reports and industry knowledge 

UK Population ONS 

Retailer store footprint Websites of retailers 

Demand seasonality Primary data of Retailer R1 

Postcode sectors Primary data of Retailer R1 
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We ran Monte Carlo simulation for home delivery demand estimation and solved 

vehicle routing problems to estimate gains from logistics collaboration in the stem mile 
and the last mile distribution of groceries.  

We simplify the UK online grocery market to:  
a) central picking locations of retailers (stores, dark stores, distribution centres, 

dedicated online fulfilment centres),  

b) micro hubs near consumers (one micro hub per postcode sector where 
12,381 postcode sectors exist in the UK with 6,979 residents on average in 

2011), and  
c) consumers’ locations (postcodes in the postcode sector). 

We also use the latitude and longitude of postcode sectors in our distance 

calculations for the vehicle routing problem. Postcodes in the UK are alphanumeric 
references comprising an outward code of 2-4 characters and an inward code of three 

characters. The postcode is structured hierarchically, supporting four levels of 
geographic unit: postcode area (124), postcode district (3,114), postcode sector 
(12,381), and building postcode (approximately 1.75 million). We limit our area of 

analysis to 265 postcode sectors in London, for which we have primary data (Figure 2). 
 

 
Figure 2 – Map of London; Study Area Shaded in Grey 

 
To evaluate the three flows identified in the Introduction section, ideally, we need 

grocery demand and distribution data from multiple retailers operating in the same 

geography over the same period. It proved to be extremely difficult to retrieve this 
primary data from retailers operating in our pilot city: London. Hence, we revert to 

secondary data sources and apply a demand estimation methodology that takes as input 
the total annual demand for grocery orders and produces the output of daily grocery 
orders per postcode sector for home delivery. This demand estimation methodology 

comprises six steps as follows: 
1. Estimate the UK online grocery market size from published sector reports.  

2. Apportion market size in line with the market share of retailers that offer online 
grocery service.  

3. Calculate number of orders per capita considering the UK population.  

4. Assess store footprint of each retailer by postcode area.  
5. For each postcode sector generate the number of online orders based on 

population and store footprint (e.g. size of store, consideration of industrial / 
residential mix per postcode). 
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6. Run a Monte Carlo simulation to distribute the annual number of orders to days 

of the year based on the seasonality distribution of Retailer R1. 
 

In Step 1, we find from Mintel that the total grocery market size of the UK is £8.65B 
in 2015, which is the year comparable to the primary data from Retailer R1.  

In Step 2, we apportion the grocery sales to six major retailers (Tesco, Sainsbury’s, 

Asda, Ocado, Waitrose, and Morrisons) that comprise 85% of the online grocery market 
in the UK in 2015.  

In Step 3, we identify the average basket size for each retailer from their annual 
reports and other publicly available data to estimate the number of grocery home 
delivery orders / year. With an average basket size of £101.37, the total number of 

grocery orders / year in the UK is 85,321,786. To estimate the annual grocery orders / 
postcode sector we use the UK census in 2011 and the population projection for 2015. 

This then informs the population per postcode sector to estimate the annual grocery 
home delivery orders / postcode sector.  

A novelty of our approach is to incorporate the store footprint of retailers as an 

estimator of home delivery orders of groceries in Step 4. We assess the store footprint of 
retailers based on the types of stores and the distribution of stores in the postcode sector. 

The types we consider are large, standard, small, convenience, and filling stations stores 
(smallest store format in gas stations). We set the sales of a standard store to 1 and 
assume a large store sells 75% more than the standard store, whereas a small store sells 

50% less than the standard store. The corresponding indices for convenience and filling 
station stores are 7% and 5%, respectively.  

In Step 5 we take a weighted contribution of population and store footprint per 
postcode sector to estimate the annual grocery home delivery orders. We assign the 
weights of population and store footprint to minimise the estimation error with the 

primary data of Retailer R1. The optimum weights for population and store footprint are 
50% and 50%, respectively, with a mean absolute percentage error of 47.8%.  

As the Step 6 implies, we use Monte Carlo simulation to incorporate the uncertainty 
in grocery orders into our analysis framework. The simulation model is deterministic 
(Kleijnen, 2015) in the sense that the total number of grocery orders / year is fixed, but 

the exact values of its inputs (when the orders will be placed across the year – the daily 
grocery delivery demand) are uncertain so these values are sampled from a prior input 

distribution (empirical seasonality distribution from primary data of Retailer R1) 
through Monte Carlo methods run on MATLAB. Monte Carlo simulation is a 
commonly used technique to assess the impact of uncertainty in input parameters on the 

variability of the outputs from the system. In this case, the demand is the most critical 
uncertain element that governs the grocery distribution operation. 

The output of this model is the annual online grocery demand for each of the six 
major retailers based on postcode sector. We assess the performance of our demand 
generation model based on the primary data set to minimise the estimation error. We 

also developed a consumer survey to examine the preferences for days of the week and 
times of the day to receive the grocery delivery. We conclude that it is realistic to use 

the demand distribution from the primary retailer for our collaboration scenario. 
In a capacitated vehicle routing problem, the main inputs are customers, a depot, the 

distances between all locations, demand, and vehicle capacity. Let 𝑁 be the set of 

customers, 𝑁 =  {1, 2, … , 𝑛} and let 0 denote the depot. Then the set of all locations is 

denoted by 𝑃, where 𝑃 =   𝑁 ∪  0 =  {0, 1,… , 𝑛}. An undirected graph 𝐺(𝑃, 𝐸) 

denotes the edges between the set of all points in 𝑃. For each edge, an associated travel 
cost 𝑐𝑖𝑗 is defined, and it can correspond to the distance from point 𝑖 to point 𝑗, ∀ 𝑖, 𝑗 ∈
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𝑃. 𝐾 denotes the fixed number of identical vehicles (size of fleet) in the depot 0, each 

with a capacity 𝐶, measured in the same unit as the demand 𝑑𝑖 of customer 𝑖. The 

binary decision variables 𝑥𝑖𝑗 take the value 1 if the vehicle travels from point 𝑖 to point 

𝑗, otherwise zero. The continuous decision variables 𝑢𝑖 are used to eliminate subtours 
and bounded between the demand of the customer and the capacity of the vehicle. Then, 

the capacitated vehicle routing problem can be formulated as follows: 
 

min 𝑍 =  ∑ ∑ 𝑐𝑖𝑗 𝑥𝑖𝑗       𝑖 ≠ 𝑗𝑛
𝑗=0

𝑛
𝑖=0   (1) 

∑ 𝑥𝑖𝑗
𝑛
𝑖=0 = 1           ∀𝑗 ∈ 𝑁  (2) 

∑ 𝑥𝑖𝑗
𝑛
𝑗=0 = 1      ∀𝑖 ∈ 𝑁  (3) 

∑ 𝑥0𝑗
𝑛
𝑗=1 ≤ 𝐾 (4) 

𝑢𝑗 − 𝑢𝑖 + 𝐶 ∗ 𝑥𝑖𝑗 ≤ 𝐶 − 𝑑𝑖         ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗  (5) 

𝑑𝑖 ≤ 𝑢𝑖 ≤ 𝐶     ∀𝑖 ∈ 𝑁 (6) 
 

Equation (1) is the objective function, which minimises the cost of deliveries 
depending on the distance. Equations (2) and (3) ensure each customer is visited once, 

each vehicle visiting a customer also leaves the customer. Equation (4) is the bound on 
the total number of vehicles to be used (or it is the minimum possible number of routes 
(Uchoa et al., 2017)). Equation (5) is the subtour elimination to achieve a single 

connected tour from the depot location to the customers on the route. In other words, the 
inequalities involving 𝑢𝑖 eliminate tours that do not begin and end at depot 0 (Miller, 

Tucker, & Zemlin, 1960). Finally, Equation (6) sets lower and upper bounds on the 
subtour elimination variable 𝑢𝑖. We run the above capacitated vehicle routing model for 

Business Models 2 and 3, and a modified version of this model which incorporates time 

windows for grocery deliveries to analyse the benefits from collaboration in Business 
Model 1. 

We used the design of experiments to derive valid statistical inferences from our 

experimental observations. In these experiments, we made purposeful changes to the 
input variables of the grocery home delivery system and observed their impact on the 
benefits from logistics collaboration. We follow the factorial design where each 

complete trial of the experiment investigates all possible combinations of the levels of 
the factors (Montgomery, 2013). We consider picking locations, vehicle capacity, and 

logistics operation as the factors that affect the distance travelled to fulfil home 
deliveries of groceries purchased online. Table 2 shows the levels of each factor. 
 

Table 2 – Design of Experiments 

Business 
Model 

Picking 
Locations 

Vehicle 
Capacity 
(orders) 

Postcode 
Sectors 

Time 
Windows 

Logistics Operation 

Business 

Model 1 

West, North, 

Centre-West, 
Centre-East 
(4) 

15 and 20 2 18 Independent (As-Is) 

(3 retailers) and 
Collaborative (3 
scenarios) 

Business 
Model 2 

West and 
North (2)  

10, 15, 20, 
and 25 

orders (4) 

265 1 Independent (As-Is)  
(2 retailers) and 

Collaborative (1 
scenario) 
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Business 
Model 

Picking 
Locations 

Vehicle 
Capacity 

(orders) 

Postcode 
Sectors 

Time 
Windows 

Logistics Operation 

Business 

Model 3 

West and 

North (2) 

15 and 20 265 4 Independent (As-Is)  

(2 retailers) and 
Collaborative (1 
scenario) 

 

We ran the mathematical models explained in the Methodology section for each 
picking location, for each capacity, for each logistics operation, and for each day. We 
identify three scenarios for four hypothetical retailers:  

1. Scenario A: Retailers 1 and 2 collaborate (total market share of 16%). 
2. Scenario B: Retailers 3 and 4 collaborate (total market share of 19%). 

3. Scenario C: Retailers 1, 2, and 4 collaborate (total market share 20%). 
In Business Model 1, we focus on two postcode sectors: N19 3 covering the areas of 

Upper Holloway, Archway, Tufnell Park, Hornsey, Islington with approximately 5,827 

households and a population of about 13,309 (2011 census) and N17 6 covering the 
areas of Tottenham, South Tottenham, Haringey with approximately 7,568 households 

and a population of about 19,968 (2011 census). In Business Models 2 and 3 we 
consider 265 postcode sectors for which we have primary and secondary data for 
demand estimation. The number of vehicle routing problem instances we ran for each 

business model is given in Figure 3 totalling to 40,768. 
 

 
Figure 3 – Problem Instances Based on the Design of Experiments 

Findings 

We evaluated our models based on total distance covered by the retailer, first under the 
base case where retailers work independently (As-Is situation) and then under the 
proposed collaboration models (To-Be). When all scenarios are considered together, the 

total distance savings are 23% for Business Model 1, 9% for Business Model 2, and 
11% for Business Model 3. Table 3 presents distance savings in both postcode sectors 

under the three scenarios investigated with an average distance reduction of 24% for a 
vehicle capacity large enough to fit 10 orders per route. The savings average 22% for a 
vehicle with 15 orders per route.  

 
Table 3 – Business Model 1 Distance Savings 

 Two Retailers (16%) Two Retailers (19%) Three Retailers (20%) 

 Islington Tottenham Islington Tottenham Islington Tottenham 

Capacity = 10 13% 19% 19% 23% 37% 33% 

Capacity = 15 8% 19% 23% 23% 21% 35% 
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The results for Business Model 2 are given in Figure 4. The difference between the 
two picking locations is evident for small vehicles whereas it tends to diminish with 

increasing vehicle size (25 orders). 

 
Figure 4 Distance Savings in Business Model 3 

 
Distance savings in the case of Business Model 3 are captured in Figure 5. The North 

Picking Location is serving 198 postcode sectors whereas the West Picking Location is 
serving 67 postcode sectors. The impact of size is reflected on all time windows with an 

average reduction of 16%.  

 
Figure 5 - Business Model 3 Distance Savings 

 
Conclusion 

Emerging convenience services such as online shopping enable people to shop online 
almost anything, including groceries. Online grocery purchase and delivery services are 
recognised as a key offering by major retailers in the UK. Unfortunately, the fierce 

competition and the constant requirement to ‘delight the customers’ has resulted in 
retailers’ having their own fleets to satisfy the consumers’ home delivery demand with 

inevitable inefficiencies in the distribution operation.  
In this paper, we focus on the last mile delivery of groceries purchased online and 

investigate the benefits of logistics collaboration among retailers. Our methods 

comprise grocery demand estimation based on Monte Carlo Simulation and 
Mathematical Modelling recognised as the capacitated vehicle routing problem (with 

time windows) in the literature. Our approach is comparing the base case where each 
retailer operates their own fleet with a theoretical case where retailers collaborate.  

We considered the UK online grocery market and how the online retailers could 

improve their operational efficiency in logistics if they collaborate with their 
competitors. Our results suggest that it is theoretically possible for the online UK 

retailers to reduce logistics costs through collaboration. To our knowledge, this is a 
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unique contribution in relation to logistics collaboration for the UK online grocery 

market. However, implementation of a collaborative model still poses several 
challenges due to the extremely competitive nature of the food retail market. Potential 

extensions of our work are to define the ideal locations for the hubs, and examine cost, 
energy, and emission savings for different groups of collaborating retailers.  
 

Acknowledgement 

This project has received funding from the European Union's Horizon 2020 research 

and innovation programme under grant agreement No 635773, U-TURN (http://www.u-
turn-project.eu/). 
 

References 
Belavina, E., Girotra, K., & Kabra, A. (2017). Online Grocery Retail: Revenue Models and 

Environmental Impact. Management Science, 63(6), 1781–1799. 

https://doi.org/10.1287/mnsc.2016.2430 

Cachon, G. P. (2014). Retail Store Density and the Cost of Greenhouse Gas Emissions. Management 

Science, 60(8), 1907–1925. https://doi.org/10.1287/mnsc.2013.1819 

Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management Science, 6(1), 80–

91. https://doi.org/10.1287/mnsc.6.1.80 

de Kervenoael, R., Yanık, S., Bozkaya, B., Palmer, M., & Hallsworth, A. (2016). Trading-up on unmet 

expectations? Evaluating consumers’ expectations in online premium grocery shopping logistics. 

International Journal of Logistics Research and Applications, 19(2), 83–104. 

https://doi.org/10.1080/13675567.2015.1023186 

Edwards, J. B., McKinnon, A. C., & Cullinane, S. L. (2010). Comparative analysis of the carbon 

footprints of conventional and online retailing. International Journal of Physical Distribution & 

Logistics Management, 40(1/2), 103–123. https://doi.org/10.1108/09600031011018055 

Hackney, R., Grant, K., & Birtwistle, G. (2006). The UK grocery business: towards a sustainable model 

for virtual markets. International Journal of Retail & Distribution Management , 34(4/5), 354–368. 

https://doi.org/10.1108/09590550610660279 

Kleijnen, J. P. C. (2015). Design and Analysis of Simulation Experiments (Vol. 230). Cham: Springer 

International Publishing. https://doi.org/10.1007/978-3-319-18087-8 

Kotzab, H., & Teller, C. (2003). Value‐adding partnerships and co‐opetition models in the grocery 

industry. International Journal of Physical Distribution & Logistics Management , 33(3), 268–281. 

https://doi.org/10.1108/09600030310472005 

Lozano, S., Moreno, P., Adenso-Díaz, B., & Algaba, E. (2013). Cooperative game theory approach to 

allocating benefits of horizontal cooperation. European Journal of Operational Research , 229(2), 

444–452. https://doi.org/https://doi.org/10.1016/j.ejor.2013.02.034 

Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer Programming Formulation of Traveling 

Salesman Problems. Journal of the ACM, 7(4), 326–329. https://doi.org/10.1145/321043.321046 

Mintel. (2017). Online grocery retailing – UK, March. Retrieved March 5, 2018, from 

http://store.mintel.com/online-grocery-retailing-uk-march-2017 

Montgomery, D. C. (2013). Design and Analysis of Experiments (8th ed.). Singapore: John Wiley & 

Sons, Ltd. 

Nathanail, E., Adamos, G., & Gogas, M. (2017). A novel approach for assessing sustainable city logistics. 

Transportation Research Procedia, 25, 1036–1045. https://doi.org/10.1016/j.trpro.2017.05.477 

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., & Subramanian, A. (2017). New benchmark 

instances for the Capacitated Vehicle Routing Problem. European Journal of Operational 

Research, 257(3), 845–858. https://doi.org/10.1016/j.ejor.2016.08.012 

UN. (2015). World Urbanization Prospects: The 2014 Revision . (ST/ESA/SER.A/366). 

Wei, L., Zhang, Z., Zhang, D., & Leung, S. C. H. (2017). A simulated annealing algorithm for the 

capacitated vehicle routing problem with two-dimensional loading constraints. European Journal of 

Operational Research, (17), 377–2217. https://doi.org/10.1016/j.ejor.2017.08.035 

 

 

http://www.u-turn-project.eu/)
http://www.u-turn-project.eu/)

