
 

1 

 

A heuristic solution for order picking problem in unit-

load automated storage and retrieval systems 
 

 

Yacob Khojasteh (khojast@sophia.ac.jp)  

Graduate School of Global Studies, Sophia University, Yotsuya, Tokyo 102-8554, Japan 

 

 

 

 

 

Abstract 
 

In this study, we consider an end-of-aisle unit load automated storage and retrieval system 

(AS/RS), where one storage and retrieval machine is dedicated to all aisles. The machine 

is able to travel in cross warehouse aisle through a transfer car called “traverser”, so that 

it can enter any pick aisle. When retrieval requests are made for multiple items and the 

items are in multiple stock locations, there will be a huge number of feasible solutions 

with different retrieval times. The objective is to minimize the total time travelled by the 

machine to complete the retrieval process of customer orders. 

 

Keywords: Automated storage and retrieval systems, Multi-aisle automated warehouse, 

Order picking 

 

 

Introduction 

The power of warehousing system to rapidly respond to customer demands participates 

an important function in the success of a supply chain. Automated warehouses are widely 

used in manufacturing, warehousing, and distributions applications. Automated storage 

and retrieval systems (AS/RSs) are basic components of automated warehouses. An 

AS/RS allows for more efficient utilization of warehouse space, increasing in speed and 

accuracy of operations, removing human factor from the equation, quicker response times, 

reducing the probability of damaging or losing goods, increasing security level, and 

reducing labour needed to operate warehouse productively. 

One important operational aspect of the AS/RS is to minimize the total time or distance 

travelled by the storage and retrieval machine to complete the retrieval process of 

customer orders. Warehouse managers are interested in finding the most economical way 

of picking orders, which minimizes the costs involved in terms of travel distance or travel 

time. Order picking, which is a fundamental component of the retrieval function 

performed in warehouses, is a process by which products are retrieved from specified 

storage locations with respect to customer orders. By sequencing the retrievals in a smart 

way, improvements in the overall throughput of the AS/RS can be obtained. 

Several approaches have been used to find solutions to the order picking problems: 

genetic algorithms (e.g., Krishnaiah and Sarveswar, 2003; Hsu et al., 2005; Khojasteh-

Ghamari and Son, 2008), Petri nets (e.g., Amato et al., 2005), and neural networks (e.g., 

Wang and Yih, 1997). This study takes inspiration from our previous work (Khojasteh-

Ghamari, 2012) and aims at continuing research in the same direction. In this paper, we 

focus on studying the current techniques in this field and ways to apply them to order 



 

2 

 

picking problems and modify or improve them in order to achieve better results. First, we 

discuss and analyse the concepts of each studied methods. Second, we address possible 

techniques to improve them. Third, we conduct numerical experiments for performance 

assessment of proposed solutions, followed by discussions and conclusions. 

 

Warehouse model and problem description 

An end-of-aisle order picking automated storage and retrieval system is considered in 

which there are one or more aisles and each aisle contains a storage racks on both sides 

of an aisle. Input-output stations are located at the end of each aisle at the same level as 

the first rows of the racks. A single storage/retrieval (S/R) machine is employed which 

services all the aisles. The machine can simultaneously move in both horizontal and 

vertical direction. Due to this, machine can travel in accordance with Chebyshev’s travel 

concept, so the travel time to some point in the automated warehousing system will be 

decided by the maximum travel time of horizontal and vertical travel 

When retrieval requests are made for multiple items and the items are in multiple stock 

locations, there will be a huge number of feasible solutions with different retrieval times. 

The objective is to minimize the total time travelled by the S/R machine to complete the 

retrieval process of customer orders.  

 

Solution methods 

Enumeration 

A simple genetic algorithm is presented to solve the problem. For illustration of the 

superior nature of the algorithms, it is imperative to contrast them against other techniques 

as well as optimal solutions. In view of this, an algorithm for obtaining the ideal solution 

to the problem known as the enumeration algorithm is presented. The outcomes are 

utilized for benchmarking solutions to compare the performance of the other suggested 

algorithm. 

With this method, number of all feasible solutions to the problem that have to be 

evaluated has rapid rate of increase with increase in number of items stored in a 

warehouse or number of items in the order. With high number of items in the order or 

stored in the warehouse, this algorithm could have impractical calculation times or even 

impossible to compute with the level of current technology and in general. In order to still 

get the solution to the problem it will be required to use a different approach for such 

cases. 

 

Genetic algorithm 

We develop a genetic algorithm to solve the order picking problem.  

 

Representation 

For the order-picking problem, a chromosome denotes a possible solution in which each 

is considered a genetic sequence alongside its related allele. Notably, all genes within 

chromosomes denote the kind of item, whereas their related allele denotes the site of 

storage (location in the warehouse). In view of this, each possible solution is made up of 

one chromosome, where gene quantity is equivalent to the quantity of items within the 

order requested. Figure 1 illustrates a possible solution, C1, where five items #1, #2, #3, 

#4, and #5 are requested for collection. 
 

#3[116] #1[131] #5[43] #4[87] #2[72] 

Figure 1 – a chromosome C1 
 



 

3 

 

In the solution, items #1, #2, #3, #4, and #5, as well as their location numbers [131], 

[72], [116], [87], and [43] are marked for retrieval. Notably, the sequence for retrieving 

items has been taken into account within the representation. In the example, item #3 with 

[116] as the location code would be the first to be retrieved, followed by #1, #5, #4, and 

#2 alongside their respective location numbers [131], [43], [87], and [72]. 

 

Evaluation 

At every generation, chromosomes are subject to a fitness function assessment. Since the 

issue is considered as a minimization problem, the value of objective function for every 

chromosome should be converted into fitness values, this has to be done for suitable 

chromosomes to have bigger fitness values.  

 

Selection 

Reproduction (selection) operator refers to the way individuals are chosen from a 

population when mutation and crossover parents combine to yield the following 

generation. A roulette wheel is utilized in the selection process for reproducing the 

following generation depending on the existing population where a suitable chromosome 

is better placed to reproduce in the following generation.  

 

Crossover 

Crossover operator allows the algorithm to obtain the ideal genes from various 

chromosomes and incorporating them to potentially viable offspring. As an example, 

consider this crossover of two random orders for 10 items. Randomly selected points: left 

4 and right 6 as shown in Figure 2. 

 

 
Figure 2 – Crossover operation 

 

For the first child procedure goes as following: after copying all first parent’s 

chromosomes, we then need to replace the one at position 5 (Item #7) with the item from 

the corresponding position of second parent (item 4). We locate Item 4 in first parent 

(position 2) and change it with Item #7 at position 5, while keeping the original indexes 

from the first parent for both of the items. The same operation is repeated for items #9 

and #6. For the next Item #8 at position 7, however, there is no need to change anything, 

as both parents have the same item at this position. These operations are then repeated for 

the remaining position of the first child and for the second child, the only difference is 

that second child is taking second parent’s chromosomes before the crossover. 

 

 

 

#5[182] #4[48] #3[151] #1[157] #7[173] #9[193] #8[77] #2[51] #6[57] #0[6] 
P1 

 

#7[91] #0[124] #1[109] #3[134] #4[90] #6[162] #8[190] #5[111] #2[111] #9[125] 
           P2 

 

#9[193] #7[173] #3[151] #1[157] #4[48] #6[57] #8[77] #5[182] #2[51] #0[6] 

C1 

 

#4[90] #0[124] #1[109] #3[134] #7[91] #9[125] #8[190] #2[111] #6[162] #5[111] 

          C2 



 

4 

 

Mutation 

In order picking problem mutation changes only the location of the item, selecting from 

the list of the storage locations that have it. Mutation cannot impose changes over the 

sequence of the items. Position of the item to be mutated is selected randomly. Consider 

the following solution where position 2 (Item #9) has been randomly selected for mutation.  

 

#2[116] #9[131] #3[172] 

before 

 

#2[116] #9[8] #3[172] 

after 

Figure 3 – Mutation operation 

 

Available indexes for Item #9: 203 – 1 (One currently in use) = 202 possible positions. 

Randomly selected index 8 (it could have been any index from 1 to 203 range, except 

131) out of available range. 

 

Adaptive genetic algorithm (AGA) 

Differences of AGA in current implementation: 

 Adaptive max population with saw-edged population graph 

 Reseeding with newly generated members at certain points 

 Adaptive Pc and Pm (individually) 

 Elitism operator 

We consider combining these four techniques in particular in order to use their 

advantages to full extent, while allowing them covering disadvantages of each other 

(Xudong and Yunlong, 2013; Holland, 1992). 

 

Numerical studies and findings 

In order to evaluate and compare the performance of the proposed methods, we 

constructed a set of different warehouse configurations and different types of customer 

orders. Every sample is analysed with the help of enumeration, ordinary GA, Adaptive 

GA. Enumeration algorithm allows us to have an optimal solution, in order to be able to 

evaluate other algorithms’ performance. 20 samples are considered for each warehouse 

configuration, making total sample number 180 for every order type. 

We develop five scenarios based on five different types of customer orders, so that in 

the scenario number 1 to 5, the number of required items for retrieval is one to five, 

respectively. Initial locations of the all items in the warehouse are generated randomly. 

 

Simulation model 

Each rack has 35 number of columns and 12 Number of rows, so the total capacity of 

each rack is 420 items. Because racks are coming in pairs for one aisle, the total capacity 

of each aisle is 840 items. We also consider a warehouse with two, three and four aisles. 

Warehouse density and number of items are the two main parameters governing 

computation difficulty for this problem, as increase in these values can make number of 

feasible solutions skyrocket, especially with big orders, rendering enumeration algorithm 

unusable even for testing purposes. For warehouse density, such values as 0.6, 0.75, and 

0.9 are suggested and used.  

For each physical configuration of the warehouse, four different order structures are 

considered – for two, three, four and five items. 



 

5 

 

Table 1 – performance of the algorithms on the orders with two items; every tenth sample 

Sample 
# 

Number 
of aisles 

Enumeration (optimal) SGA AGA 

CPU time Travel time 
CPU 
time 

Travel time 
CPU 
time 

Travel 
time 

1 4 345 5.17 87 5.83 104 7.50 
11 4 286 5.17 75 5.17 72 7.17 
21 3 224 10.00 71 10.00 75 10.00 
31 3 138 7.50 59 7.50 65 7.50 
41 2 71 5.00 95 5.00 101 5.00 
51 2 86 5.83 96 5.83 107 7.50 
61 4 253 7.50 68 7.50 80 7.50 
71 4 292 7.67 98 8.00 100 7.67 
81 3 100 7.50 85 7.50 88 7.50 
91 3 160 7.67 117 7.67 110 7.67 
101 2 51 7.50 104 7.50 79 10.00 
111 2 46 5.83 113 5.83 100 5.83 
121 4 153 5.00 109 5.00 128 7.50 
131 4 190 7.17 100 7.17 96 12.50 
141 3 62 12.67 91 12.67 84 12.67 
151 3 79 9.67 98 11.00 85 9.67 
161 2 47 15.33 96 15.33 98 15.33 
171 2 40 10.00 142 10.00 125 10.00 

 

Total number of items varies depending on the order, as we are only interested in CPU 

time in this project, and having low number of items will increase quantity of each 

regardless of warehouse density, and, in turn, dramatically increase the total computation 

time of enumeration algorithm because of the need to use hard disk as a buffer memory 

and long I/O times associated with it. 

 

Simulation results 

Selected numerical performance measure results are presented in Table 1. It shows every 

tenth sample’s analysis result out of total 180 randomly generated, and split in 20 samples 

for each configuration. CPU time is shown in milliseconds, while travel times are shown 

in abstract units of time it takes to complete an order. 

For space limitation, we show only the results for the case in which customer orders 

include only two and four items, as shown in Table 1 and Table 2, respectively. 

In Table 1, where the order includes only two items, 74.44% and 78.33% of solutions 

found by SGA and AGA are optimal, with AGA having much higher average difference 

at 29.68% (compared to 9.96%) for cases when it provided suboptimal solutions. 

However, in the next case, where the order includes four items, 58.89% and 91.67% of 

solutions found by SGA and AGA are optimal, with AGA having much higher average 

difference at 34.71% (compared to 10.09%) for cases when it provided suboptimal 

solutions.  

 

Conclusions 

We addressed an order picking problem in a multi aisle AS/RS, where items of some type 

can be found in several different locations. In addition to simple genetic algorithm, an 

adaptive genetic algorithm was developed. Enumeration algorithm was used in the 

simulation for comparison purposes and finding an optimal solution in order to assess the 

performance of already existing with the proposed algorithms. As CPU time for 

enumeration has an exponential increase speed, it takes very long time to compute a 

solution with complicated case, eventually rendering it completely unusable at the current  



 

6 

 

Table 2 – performance of the algorithms on the orders with four items; every tenth sample 

Sample 
# 

Number 
of aisles 

Enumeration (optimal) SGA AGA 

CPU time Travel time 
CPU 
time 

Travel time 
CPU 
time 

Travel 
time 

1 4 17503 42.50 450 42.50 342 42.50 
11 4 21121 39.33 399 57.33 366 39.33 
21 3 3363 21.50 259 63.50 253 21.50 
31 3 3848 37.00 337 37.00 264 37.00 
41 2 1137 60.67 232 60.67 199 60.67 
51 2 397 60.50 251 63.00 201 60.50 
61 4 5519 57.00 290 63.17 231 57.00 
71 4 10369 39.33 391 40.00 296 39.33 
81 3 3572 27.00 324 27.00 246 27.00 
91 3 1437 40.00 325 40.00 255 40.00 
101 2 182 56.00 240 56.00 184 56.00 
111 2 453 59.83 232 59.83 184 59.83 
121 4 1754 67.50 332 67.50 255 67.50 
131 4 3275 42.83 282 42.83 241 42.83 
141 3 1126 66.67 142 71.33 165 68.50 
151 3 725 63.33 138 85.83 184 63.33 
161 2 87 49.17 218 49.17 170 49.17 
171 2 728 35.33 218 35.33 177 35.33 

 

level of technological advance and in theory in general, because of the sheer amount of 

computing power needed. 

As a result, while the genetic algorithm is based on effectively guessing the right 

answer, nevertheless, it proves surprisingly effective, frequently providing solutions with 

equal or near equal fitness values to the solutions given by enumeration algorithm. At the 

same time, genetic algorithm requires much less computation time than going through 

every possible solution with enumeration algorithm and the answer could be calculated 

in a much shorter and actually reasonable time, especially for more complicated cases. 

 

References 
Amato, F., Basile, F., Carbone, C. and Chiacchio, P. (2005), “An approach to control automated warehouse 

systems”, Control Engineering Practice, Vol. 13, pp. 1223-1241. 

Holland, J.H. (1992), “Adaptation in Natural and Artificial Systems: An Introductory Analysis with 

Application to Biology, Control and Artificial Intelligence”, MIT Press. 

Hsu, C.M., Chen, K.Y. and Chen, M.C. (2005), “Batching orders in warehouses by minimizing travel 

distance with genetic algorithms”, Computers in Industry, Vol. 56, pp. 169-178. 

Khojasteh-Ghamari, Y. (2012), “Warehouse management: productivity improvement in automated storage 

and retrieval systems”, in Manzini, R. (Ed.), Warehousing in the global supply chain, London: Springer.  

Khojasteh-Ghamari, Y. and Son, J.D. (2008), “Order picking problem in a multi-aisle automated warehouse 

served by a single storage/retrieval machine”, International Journal of Information and Management 

Sciences, Vol. 19, No, 4, pp. 651-665. 

Krishnaiah C.O.V. and Sarveswar R.M. (2003), “Genetic algorithms for studies on AS/RS integrated with 

machines”, International Journal of Advanced Manufacturing Technology, Vo. 22, pp. 932-940. 

Wang, J.Y. and Yih, Y. (1997), “Using neural networks to select a control strategy for automated storage 

and retrieval systems (AS/RS)”, International Journal of Computer Integrated Manufacturing, Vol. 10, 

No. 6, pp. 487-495. 

Xudong, S. and Yunlong, X. (2013), “An improved adaptive genetic algorithm”, International Conference 

on Education Technology and Management Science (ICETMS), pp. 816-819. 


