
 
 

1 
 

A smart health grid solution for demand management of 

Emergency Departments 
 

 

Lorella Cannavacciuolo (lorella.cannavacciuolo@unina.it)  

Dept. Industrial Engineering – University of Naples Federico II 

 

Gabriella Ferruzzi  

Dept. Industrial Engineering – University of Naples Federico II 

 

Cristina Ponsiglione 

Dept. Industrial Engineering – University of Naples Federico II 

 

Pierluigi Rippa 

Dept. Industrial Engineering – University of Naples Federico II 
 

 

 

 

Abstract 
 

Overcrowding is a very challenging problem that Emergency Departments (EDs) face every day. 

Many scholars dealt with it focusing on a single ED and few works analyse the problem in a 

network perspective. In this paper, we reinforce the idea that managing EDs as a network can be an 

appropriate solution for mitigating overcrowding. Based on energy smart grid concept, we propose 

an optimization model of demand side management for reducing the waiting time of the ED 

network. In order to show the potential of model, its application to a 3 EDS network located in 

Naples (Italy) is presented. 
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Introduction  

Emergency Department (ED) overcrowding is a situation in which available resources are not 

enough for the requested emergency services. Reducing overcrowding is a worldwide challenge as 

it affects the quality of care in terms of delays in diagnosis, delays in treatment, poor patient 

outcomes, decrease in access to care (Derlet, 2002; McCarthy et al. 2009; Pines and Yealy 2009).  

ED performance indicators are waiting time and length of stay. These are affected by patient 

arrivals whose increase may compromise the timeliness of the service, putting patients in serious 

condition at risk (Horwitz et al., 2010; Asplin et al 2003).  

Patient’s flow in ED can be articulated in two sequential phases: 1) evaluation and treatment: 2) 

admission to hospital.  In evaluation and treatment phase, the triage procedure assigns to patient a 

priority code, based on the urgency of receiving the first treatment. After the evaluation and 

treatment, the patient can be discharged or admitted to hospital.  

Patient’s waiting time depends on different variables and it is due to supply–demand mismatch 

(Horwitz et al., 2010, Xu et al., 2013). Asplin et al. (2003) proposed a conceptual model of ED 

overcrowding partitioning it  into 3 interdependent components: input, throughput, and output. 

Input factors are related to the demand for ED services, throughput factors are related to the ED 

processes of evaluation and treatment, and output factors are related to admission to hospital. 
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In this paper we focus on the first component of overcrowding conceptual model that is the 

demand for ED services. We model the flow of patient arrivals to all EDs in a territorial area in 

order to redistribute it among the EDs. The redistribution of patients’ flow can reduce ED patient 

input and relieve overcrowding (Scheulen and Kelen, 2001).  

We propose an optimization model based on Demand Side Management (DSM), assuming that 

the EDs are nodes of a network and a centralized aggregator manages the patient’s flow.   The 

optimization model manages efficiently the patient’s flow, minimizing the overall waiting time, 

sum of the travel and waiting time for the treatment.  

According to Kao et al. (2015) and Deo and Gurvich (2013), the paper reinforces the idea that 

EDs’ network, managed by a centralized coordination, can be the solution to the problem. 

 

Literature on ED overcrowding  

The overcrowding issue has been analysed from different perspectives leading to identify several 

caused and different solutions.  

Many scholars put in evidence the overcrowding depends on unavailability of inpatient beds, that 

contributed to significant delays and congestion difficulties (Kyriacou et al.1999; Arkun et al. 2010; 

Espinosa et al., 2002). Other causes concern the considerable number of low-acuity patients and the 

day of the week (Siddharthan, 1996; Arkun et al., 2010).  

In order to solve the overcrowding, organizational and process redesign solutions are proposed. 

Possible solutions are improving the support from other centres or general practitioners, nurses or 

doctors (Pines, 2009), expanding nursing roles or health service delivery (Elder et al., 2015), 

enforcing a toll on non-emergency users of the ED, so as to deter their usage (Siddharthan, 1996), 

implementing a fast-track facility for coping with the low-acuity patients (Fernandes and 

Christenson, 1995; Rodi et al., 2006), increasing numbers and coverage hours of physicians and 

nurses (Duguay and Chetouane, 2007).  

In a review on causes, effects and solutions related to overcrowding phenomena, Hoot et al. 

(2008) grouped the solutions of crowding in three clusters: a) increased resources; b) demand 

management; c) operations research.  

In demand management group, many scholars have analysed the impact of ambulance diversion 

on overcrowding. Ambulance diversion can be a solution for balancing the capacity and demand in 

a network, patients are rerouting from overcrowded EDs to less crowded ones (Scheulen and Kelen, 

2001; Burt et al., 2006). However, empirical evidences show that ambulance diversion has no 

beneficial impact on waiting times at EDs (Mihal and Moilanen, 2005; Kowalczyk, 2008).  

Deo and Gurvich (2011) suggest that “operational benefits of ambulance diversion presuppose 

centralized coordination that can match excess capacity and excess demand. Diversion decisions are 

often made by ED administrators with the object of mitigating overcrowding at their own location 

while keeping the number of diverted patient at reasonable levels. Kao et al. (2015) confirm that 

ambulance diversion does not provide beneficial from a regional point of view. The patients can be 

properly diverted to the EDs less crowded only if the flow is managed by a centralized regional 

coordinator.  

In summary, we can conclude that solutions are mainly addressed to analyse resource and 

demands of a single ED not connected to other ones. Ambulance diversion can be considered as a 

network solution, but it is necessary to pass from a decentralized strategy to centralized one. Few 

works deal with the ambulance diversion issue from a centralized managing perspective applied a 

queueing theory, but they do not keep in account the travel time, that is a relevant variable for 

selection of ED in diverting ambulance (Deo and Gurvich, 2011).  

 

ED health smart grid as network solution to overcrowding 

The proposed conceptual model is based on the following assumptions.  
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Firstly, the EDs of a given territorial areas are the nodes of a network and the patient arrivals 

(ambulance and walking-in) can be directed to any ED of the network.  

Secondly, the decision-maker of system is a centralized actor.  

Thirdly, the decision is made considering the forecast of patient arrivals of each EDs, the priority 

code of the patient and the total time (travel and waiting time for the treatment).  

Lastly, the optimization model directs the flow of the patients in such way as to minimize the 

overall waiting time of the network.  

We tackle the redistribution of the patients’ flow that everyday arrive to the EDs at the same way 

of the residential load in a smart grid. In energy smart grid, demand side energy consumption 

pattern can be modified to foster better efficiency through a desired electric load profile 

(Behrangrad, 2015; Siano, 2014) for a predefined control period. Traditional DSM measures are 

mainly used to smooth the utility load profile, exploiting characteristics of some controllable loads. 

Generally, controllable loads can be classified into curtailable and shiftable loads (Schwaegerl et al. 

2011, Wang et al. 2010). The first category refers to loads that can be reduced or switched off 

during specific time periods; the second one refers to loads that can be postponed to a later time 

In an analogous way, a centralized actor manages the shiftable load (patient arrivals) among EDs 

acting as a smart grid that we label health smart grid. The DSM model can be applied for reducing 

the peaks load in the emergency department. 

The centralized actor is an aggregator optimization load demand integrated with the forecasting 

problem of each ED. ED forecasting identifies and quantifies an expected load demand, and ED 

optimizes its internal scheduling. Knowing both the expected load of each ED and the total load of 

the system, the aggregator can plan the optimal strategy for the following day respect to day of 

demand forecasting. This is a short-term load management problem (Behrangrad, 2015; Boivin, 

1995; Kinhekar, 2014; Mohsenian-Rad et al. 2010; Paulus and Borggrefe, 2011; Siano, 2014; Wang 

et al., 2010; Strbac, 2008): the input data are the forecasting data whereas the output is the choice of 

the best facilities to divert ambulance. As in energy smart grid, the model can work only if there is a 

collaboration among different EDs belong to the same smart grid. This collaboration is guaranteed 

as the decision-maker is not the single ED (as in the case of classical ambulance diversion solution) 

but a centralized actor aimed at minimizing the waiting time of the total network and not of a single 

ED.  

The mathematical model  

We apply the model of DMS, used usually to manage an electric smart grid, to reduce the peaks 

load in the emergency department, flattening the patient load among EDs.  

The assumptions are the followings:  

- patients are classified in four priority codes (white, green, yellow, red). The white and green 

codes imply low urgency to be admitted to the treatment area whereas yellow and red code 

are assigned to patients with a high priority. Each     code is characterized by an own lead 

time that is affected by a set of parameters (travel time, waiting time, treatment time). These 

parameters are influenced by the priority code;  

- each patient’s waiting time to be admitted to the treatment area is the sum of the travel time 

Sj, need to reach the ED, and the waiting time Tj of in the ED; 

- each ED present the same number of patients;  

- each area coverages the same population density; 

- patients do not have preference with respect to EDs. 

Considering the     code, the hourly patients       
  is expressed as: 

 

      
           

  (1) 
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where    is the total amount of patients present in the network and available to be shifted; 

      
  s the shiftable amount of a single patient belongs to jth, assumed to be the same for all the 

codes. Finally, the profile of shiftable loads is added to the profile of fixed loads. 

Let us define a suitable shifting model to be implemented into the general load management 

model. The relation between the loads before and after shifting can be represented through a binary 

variables     . 

The condition     = 1 identifies the initial interval t where the     shiftable load starts to be 

supplied for the next    hours with j belongs to interval [0;24].    represents the number of hours 

that each patient is available to wait for access to the treatment area.  

Considering that the profile of the      shiftable load starts only once time, only a binary variable 

can be equal to one.  We have that: 

 

                
 

         

     (2) 

 

Let us consider that       
 is the shiftable load of the jth code at th hour,       

 is the shiftable 

load of the jth single patient at th hour,         is the shifted load of the jth shiftable load at th hour.  

The links between shiftable and shifted loads are: 

 

       
 =             

  
                

                 )  (3) 

with k =    -   +1    

 

Moreover, only the first (   -   +1) binary variables can be defined because each      variable is 

associated with the next (   +1) variables        
. 

The value of       depends on the objective function to be optimized 

The objective function is to minimize the overall time, subjected to a set of constraints: 

 

                   

  
           

        (4) 

 

In (4), the weights       and     are linked by the priority codes.     and       represent, travel 

time and waiting time, respectively. The functions are assumed to be linear.       and     assume 

value in the interval [0,1], depending on the priority code. For example, red code has a greater 

priority therefore we set       = 1 and     = 0 

Equality constraints are the balance constraints: 

 

                   
              

     
            (5) 

 

where     is the set of shiftable loads;     is the set of fixed loads and    is the set of the 

patients arrive at ED. 

The constraints that express the links between shiftable and shifted load, are equations (2) and 

(3). 

 

The Case Study 

The proposed model is tested on a smart grid characterized by ED of 3 Hospitals located in 

Naples, namely for privacy concern H1, H2, and H3. The EDs’ load and priority code distribution 

are the followings:  
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-H1 has a load of  29821 patients in ED, subdivided in 5127 white code (17%), 22826 green 

code (76,9%), 1829 yellow code (6%) and 39 red code (0,1%);  

- H2 has a load of  24408 patients in ED, subdivided in 208 white code (0,9%), 17727 green code 

(72,6%), 6270 yellow code (25,7%) and 203 red code (0,8%); 

- H3 has a total load 21866 patients in ED, subdivided in 128 white code (1%), 15588 green code 

(71%), 5792 yellow code (26%) and 358 red code (2%). 

It is assumed that each ED have the same capacity in terms of resources available in the EDs. 

In tab. 1, tab. 2, and tab. 3 load profile description, for each ED, are shown. The fixed load is 

composed by the red and yellow codes that are in the ED at time t; the shiftable load is the load that 

is possible to be posticipated, composed by white and green codes. 

 
Table 1 – H1 ED’s load description 

Hour        

 

     

        

     

         
      

 

(white code) 

      
 

(green code) 

1 780 49 731 134 597 

2 780 49 731 134 597 

3 800 50 750 138 612 

4 800 50 750 138 612 

5 800 50 750 138 612 

6 850 53 797 146 651 

7 830 52 778 143 635 

8 900 56 844 155 689 

9 1000 63 937 172 765 

10 1000 63 937 172 765 

11 1200 75 1125 206 919 

12 1300 81 1219 224 995 

13 950 60 890 163 727 

14 800 50 750 138 612 

15 800 50 750 138 612 

16 1000 63 937 172 765 

17 1243 78 1165 214 951 

18 1500 94 1406 258 1148 

19 1600 100 1500 275 1225 

20 1750 110 1641 301 1340 

21 1870 117 1753 322 1431 

22 2329 146 2183 400 1783 

23 2650 166 2484 456 2028 

24 2300 144 2155 395 1760 

TOT 29832 1869 27963 5129 22834 

 
Table 2 – H2 ED’s load description 

Hour        

 

     

        

     

         
      

 

(white code) 

      
 

(green code) 

1 500 133 367 4 363 

2 500 133 367 4 363 

3 600 159 441 5 436 

4 600 159 441 5 436 

5 650 172 478 6 472 

6 680 180 500 6 494 

7 730 194 536 6 530 

8 750 199 551 6 545 

9 750 199 551 6 545 

10 800 212 588 7 581 

11 800 212 588 7 581 

12 900 239 661 8 654 

13 970 257 713 8 704 

14 1000 265 735 9 726 

15 1100 292 808 9 799 

16 1150 305 845 10 835 

17 1200 318 882 10 872 

18 1300 345 955 11 944 

19 1400 371 1029 12 1017 

20 1450 385 1065 12 1053 
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21 1550 411 1139 13 1126 

22 1700 451 1249 14 1235 

23 1800 477 1323 15 1307 

24 1528 405 1123 13 1110 

TOT 24408 6473 17935 208 17727 

 
Table 3 – H3 ED’s load description 

Hour        

 

     

        

     

         
      

 

(white code) 

      
 

(green code) 

1 400 113 287 2 285 

2 450 127 324 3 321 

3 500 141 359 3 356 

4 500 141 359 3 356 

5 550 155 395 3 392 

6 600 169 432 4 428 

7 650 183 467 4 463 

8 650 183 467 4 463 

9 700 197 503 4 499 

10 750 211 539 4 535 

11 800 225 575 5 570 

12 900 253 647 5 642 

13 800 225 575 5 570 

14 650 183 467 4 463 

15 700 197 503 4 499 

16 750 211 539 4 535 

17 800 225 575 5 570 

18 900 253 647 5 642 

19 1000 281 719 6 713 

20 1200 338 862 7 855 

21 1500 422 1078 9 1069 

22 1714 482 1232 10 1222 

23 2000 563 1438 12 1426 

24 2400 675 1725 14 1711 

TOT 21864 6149 15715 128 15587 

 

Based on the load descriptions, we plotted the EDs’ load profile in the pre and post-shift state. 

Fig.1 shows the total load for the EDs, composed by fixed load (red and yellow codes) and shiftable 

loads (white and green codes) in the pre- and post-shift state..  

In the figure 1, the axis of the abscissas represents the daily hours while the axis of the ordinates 

the patients present in ED. We can notice that the post-shift load can be also higher than pre-shift 

load in some hours. 
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Figure 1 – Total Load pre and post shift for each ED 

 

After the implementation of the model, all shiftable loads move from an ED to another one in 

each daily hour in order to obtain the lowest sum of travel and waiting time, namely total time.  

This is coherent with the model whose aim is to identify the optimal solution for the whole system 

and not for a single ED.  
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In order to quantify the variability of the load, we have computed the flattening indices, showed 

in table 4.  

 
Table 4 – Flattening Indices 

Index H1 H2 H3 

 Pre-shift Post-shift Pre-shift Post-shift Pre-shift Post-shift 

Peak 2650 1914 1800 2225 2400 2343 

Peak Variation  -38,50%  23,7%  -2,43% 

Peak to valley 1870 1403 1300 1630 2000 1768 

SQRT  1699  888  1082 

 

The flattening indices are the followings: 

- Peak Evaluation is the highest value of load in pre and post shift in the 24 hours; 

- Peak Variation is the variation between the peak in pre and post shift; 

- Peak to Valley is the difference between highest value (pick) and lowest value of the load in pre 

and post shift.  

We notice that a significant peak variation is in H1 and H2. The model allows to redistribute the 

flow of patients above all between H1 and H2. The Peak to valley indicate that the peak among the 

three EDs has been smoothed.  

This model allows to improve the efficiency of the system even if the efficiency of a single ED 

sometimes is worst. This confirms the idea that a centralized approach to network management 

improve the ED performances. 

 

Conclusion 

The ED overcrowding problem has been treated as a classical problem of load management 

considering the EDs as part of a health smart grid. The health smart grid is a network managed by a 

centralized actor whose aim is to distribute the patients, with different priority codes, to EDs. The 

optimization model is based on DSM, considered as an integral part of the optimal short-term 

management problem. In such problem, the variable is the allocation of shiftable loads to EDs. In 

the current version of the model, shiftable load concerns the green and white codes.  

The health smart grid model works well in reducing the overcrowding under the following 

conditions:  

- there is the presence of a difference between the maximum and minimum load;  

- there is a notable percentage of shifted load from high load to low load; 

- the flexibility to differentiate the load in different typology of codes 

- the availability of the load to wait for the treatment.   

We applied the model to a health smart grid composed by 3 EDs. 

Even if  it is not possible to prevent the access of a patient to ED, the model takes in account a 

capacity constraint of ED imposing      equal to 1 to all patients, green and white, exceeding the 

capacity.  

The results highlight that shaving the peaks is the more appropriate solution to overcrowding. 

We notice that the peak variation is high for some H1 and H2. In particular, H1 will be a negative 

variation of the peak whereas H2 a positive variation of the peak. In H2, there could be possible 

organizational problems connected to an higher request of nurses and physicians. This aspect will 

be investigated in the future developments. 

Furthermore, the variation of the peak reveals also a preference of the patients towards H1 rather 

than H2. In the model, we have assumed that the patients are indifferent respect to ED. Future 

development of the model will be addressed to introduce a behavioral variable to keep in account 

the preferences of the patient.  
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