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Abstract 
 

The “Bullwhip effect” is a well-studied phenomenon in SCM. However, despite the large 

amount of work in the field, mainly simulation based, the number of empirical studies 

exploring the causes of bullwhip behaviour and their impact is limited. Our paper presents a 

study of a dairy manufacturer with a distinctive set of characteristics: short shelf life, weekly 

heartbeat-shaped demand, a multi-product wheel with limited production capacity, short lead-

time requirements. By using dynamic Value Stream Mapping, we demonstrated the extent to 

which poor SC dynamic behaviour can create and amplify the bullwhip effect. We then explore 

the causes of this behaviour and identify opportunities for improvement. 

 

Keywords:  Value stream mapping, System dynamics, Bullwhip effect 

 

 

Introduction 

The “Bullwhip effect” is recognised as a typical phenomenon in the field of operations and 

SCM. It occurs when production order variance amplifies with increases in demand variance 

(Lee et al., 1997). The problems associated with the Bullwhip effect can be economically and 

operationally costly, because they lead to excessive stock holding, order backlogs, late 

deliveries, under/over resource utilization. Theoretically, bullwhip reflects the existence of 

various inefficiencies in operations and SC processes, as well as Muda (waste), Mura 

(overburden), Muri (unevenness), which are the three key lean concepts established by Ohno 

(1998). 

To date, the number of primary empirical studies that provide evidence on how bullwhip 

reveals within certain SC settings and how it can be mitigated against through optimal SC 

behaviour, decisions and strategies is very limited. This is a gap that our study aims to fill.  

 

Literature Review 
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The topic of Supply Chain (SC) Dynamics has attracted academics’ and practitioners’ attention 

for over five decades, ever since Forrester (1961) discovered that demand fluctuations amplify 

as orders flow upstream. Also known as the ‘bullwhip effect’, the phenomenon creates 

excessive stock holding, backlogs, late deliveries, under/over resource utilization (Lee et al., 

1997). Follow up work has also highlighted that attempts to improve poor SC dynamic 

behaviour can actually exacerbate the problem. Counter-intuitive behaviour often occurs 

because the causes of the behaviour are obscured from the decision-makers in the SC (Naim et 

al., 2004).  

The large majority of studies on the Bullwhip effect has been conducted within an 

experimental setting in order to, for example, understand its root causes (Ghali, 2003) and 

examine the extent to which participants’ decisions cause bullwhip related problems (Croson 

et al., 2013). The “Beer Game” has been the most employed approach, ever since established 

by Sterman (1989). In many Beer Game experiments (e.g. Cao et al., 2016), participants were 

observed to be irrational, which led to poorly informed decisions on production orders and 

replenishments. Participants’ behaviours also varied when the objectives changed and the cost 

structures were different.  

Several empirical studies have also observed the existence of the bullwhip effect in practice 

(e.g. Isaksson and Seifert, 2016). However, where empirical data is used, the assumptions that 

are built into the different modes employed vary – for example, different criteria are set to 

define a rational decision; or publicly-available, rather than purposely collected data is used to 

examine bullwhip at industry-level (Cachon et al., 2007). As a result, the practical underpinning 

of the theory associated with the bullwhip effect may not be as solid as it could be. Wang and 

Disney (2016) further emphasise that research could benefit from empirical, experimental and 

analytical approaches to identify the real cost structure as well the typical and optimal dynamic 

responses. Specifically, case studies and empirical analysis based on firm-level rather than 

industry-level, data have the ability to offer more insights on the incentives of demand 

smoothing and amplification. Our study aims to fill this gap. 

 

Study Design 

A single, longitudinal case study was conducted with one of the UK’s largest dairy 

manufacturers. The uniqueness of their operations and SC systems stems from the fact that, 

first, their products are perishable, with a very short shelf-life, while also being very cost 

sensitive. As a result, identifying an optimal batch size that achieves the best trade-off between 

production costs and reduced levels of obsolescence is critical. Large batch size can indeed 

minimise fixed production wastage and reduce machine changeover time, but can potentially 

result in obsolescent products, where products are ‘too old’ to be accepted by retailers. Also, if 

demand was over-estimated, excessive inventory will result, with higher risk of obsolescence. 

However, small batch sizes are not cost-efficient as the percentage of fixed production wastage 

can be too high when too many change-overs occur.  

Second, retailers place orders every morning and expect products to be despatched by late 

afternoon, with products arriving at their warehouses by late night. The expected service level 

is in excess of 99%, and when this target is missed, penalties can be incurred. With production 

times longer than the expected lead-times, the case company has to plan production based on 

forecasted rather than real demand. Interestingly, if it happens that the company’s opening 

stock is not enough to cover the expected demand, they may decide on a “high-priority” 

production run – which they name “Needed for tonight” (NFT). However, this is risky action, 

as production and despatch that happen on the same day has a very tight schedule due to limited 

spare capacity, so there is a chance they will be late for the despatch deadline. Despite this risk, 

they may still attempt to create NFT if they want to maintain high service levels. 



3 
 

Third, as mentioned above, production is always planned according to demand forecasts. 

Production planning requires high level of forecast accuracy and/or optimal safety stock in 

order to reduce the number of possible NFTs. The manufacturer produces a large variety of 

dairy products with drastically different demand patterns, thus forecasting can be challenging 

for some SKUs.  

Fourth, the limited production capacity is seen as a main constraint when it comes to 

production smoothing. Other constraints include: minimum and maximum levels of dairy base-

making (sub-component of finished product) can restrict production optimisation. Machine 

speed can also limit the maximum production capacity for finished products. The production 

of some ranges of products is guided by a product wheel, for example some need to be produced 

on the same day and on the same machine – this requires optimisation of raw material, machine 

and labour capacity. Limited by all these constraints, the company aims to dispatch fresher 

products and reduce its costs while increasing its sales. 

Data collection centred on the company’s forecasting, production planning and inventory 

control activities along 9 value streams (products) in order to explore the causes of dynamic 

behaviour and their impact at various nodes within the system, over a period of 12 months. The 

choice of 9 products covers combinations of various product characteristics, such as sales 

volumes, promotion activity frequency, and whether the case company directly employs 

forecasts provided by their customers (retailers) or generates its own. A mixed methods 

approach was employed, combining quantitative statistical analysis and modelling with 

qualitative interviews and focus groups involving top and middle-managers across various 

functions of the organisation.  

First, the study employed value stream mapping (VSM) to explore the material and 

information flows within the business – from the initial customer, through production planning, 

to delivery. We also mapped the generation of supplier orders, based on the company’s 

forecasted requirements, through supplier deliveries to raw material inventories. The VSM is 

particularly useful as it visualises how material and information flows interact (Rother and 

Shook, 1999). For each of the levels and flows in the VSM, time series data was collected and 

analysed (Figure 1), where a number of measures were used: NSAmp ratio (Disney and 

Lambrecht, 2008), bullwhip ratio (Lee et al., 1997), fill-rate, forecast accuracy (Wackerly et 

al., 2008) and forecast nervousness (Li  and Disney, 2016). The NSAmp ratio is applied at each 

of the inventory locations in the value stream, and is a useful measure of the company’s ability 

to manage its inventory. The variance of the production orders divided by the variance of the 

demand is known as the Bullwhip ratio (Li et al., 2014). To measure forecast accuracy, we 

choose the mean squared error over the lead-time and review process, as this is directly related 

to the inventory variance, finished goods NSAmp, and safety stock requirements. Forecast 

nervousness measures the accuracy of future forecasts streams (Li and Disney, 2016). The 

measure assigns more weight to near-term forecasts errors, less so for forecast errors further 

into the future.  These future forecasts are particularly important for raw material procurement 

when companies plan over a longer lead-time, particularly when the supplier has a long lead-

time. 

 

Findings 

We present our study’s findings following Wang and Disney (2016)’s approach, who 

include as main elements for bullwhip modelling: demand forecasting, time-delays, ordering 

policies and information sharing practices.  
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Figure 1 – Dynamic VSM 

 

Demand forecasting 

During the VSM development, we have observed that the first replenishment decision starts 

with customers’ daily orders (1), rolling daily forecasts provided by customers (2) and actual 

weekly sales (3). This information is used to create weekly forecasts (4) that are then split into 

daily forecasts by allocating various percentages to each day (5). Daily forecasts are then 

passed to the production forecasting team for more adjustments (6, 7). For the chosen category 

of products, most of the weekly demand follows a stochastic pattern, without significant trend 

and seasonality (Figure 2a), except for those products which are on frequent promotions 

(Figure 2b). The daily demand exhibits a clear heartbeat-shaped, seasonality pattern throughout 

the week (Figure 2c).  

 

 

 
Figure 2a – Weekly demand for the 9 products 
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Figure 2b – Weekly demand of a highly promoted product 

 

 
Figure 2c – Daily demand for the 9 products 

 

By investigating the products’ demand pattern and their forecasting process, we have found 

several issues. First, the company solely employs judgment to make forecasts, without any 

structure and guidance, and demand planners placed too much emphasis on forecast accuracy 

– resulting in a tendency to “keep chasing the noise”. Fildes et al. (2009) observed similar 

behaviour, with demand planners making small forecast adjustments in order to gain accuracy 

but with opposite results. In general, where statistical forecasting methods such as simple 

exponential smoothing (SES) can easily achieve high accuracy for weekly demand forecasts at 

least (Hyndman and Athanasopoulos, 2013), judgmental forecasting can be costly and 

unnecessary. Table 1 shows a summary of the 9 products’ MSEs for the company’s judgmental 

forecasts and the forecasts given by its customers, versus a simple exponential smoothing with 

α=0.5 (with manual over-ride at Christmas, when judgemental forecasts perform best). There 

is a clear pattern that SES can outperform most of the current strategies employed. 

 

 
Table 1 – A comparison of forecasting methods for the 9 products (MSE) 
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We also employed a measure of forecast nervousness (Li and Disney, 2017) to assess the 

accuracy of future forecasts used to order long lead-tile raw materials (such as plastic pots and 

labelling foils) and for financial planning. The variance of the j-step ahead order forecast error 

is: 

 

 

 

 

As a forecast error in the near future is more costly (or at least harder to deal with) than one 

in the distant future, we adopt a geometrically weighted sum of order forecast error variances 

as a measure of nervousness: 

 

 

 

Our analysis identified nervousness at w=0.8, company forecast nervousness at 12.89, naive 

forecast at 12.55 and exponential smoothing (α=0.5) at 8.88.  

If we aggregate the forecasts into weekly buckets there is little to no seasonality and 

exponential smoothing with α= 0.5 performs really well, while nervousness is reduced by 30%. 

This further reinforces the fact that the forecasting team should be concerned with process 

supervision, not with chasing noise. It should also focus on generating forecasts  once a week 

(i.e. on a Tuesday) rather than the current practice of drafting forecasts on Tuesdays, update 

them on Wednesday and finalise them on Thursday, with emergency revisions on Friday. The 

weekly forecasts should then be split into daily forecasts, for production purposes, rather than 

the current practice of using a rolling 2 week average to determine the daily split,  which was 

introducing a lot of variation into the daily forecasts. A further recommendation is that the daily 

spilt should be based on a 3 month history of daily demands, updated every 3 months. 

 

Time delay 

The approach currently employed by the company results in a time-delay in the information 

flow. As the forecasting team is predicting next week’s demand using the previous week’s 

demand information, the production planning team uses relatively outdated information to 

produce weekly plans (8). The time-delay in the forecasting process is 14 days. Information 

and material flows in planning and production could be between 5-12 days long. It is argued 

that delays in information and material flow may contribute to bullwhip effect (Forrester 1961), 

although bullwhip can be eliminated by using alternative replenishment strategy when lagged 

demand is not available or used (Hosoda and Disney, 2012). In our current case, the latest 

demand information is simply not used in the process, whereas it is always recommended to 

take account of more updated information. 

 

Ordering policy 

Production - Currently the case company plans for weekly production within a bi-weekly cycle. 

They aim to produce each product three times a fortnight (which explains the two-week 

forecasting horizon). Production planning follows a strategy called “days forward coverage”, 

that is, to produce the amount of products that cover certain following days’ demand (according 

to the forecasts). They also pack two additional days’ demand as safety stock. This set-up 

matches the staggered delivery system in Hedenstierna and Disney (2016). The ‘days forward 

coverage’ policy is commonly used in practice, but theoretically it is known to create large 

amounts of Bullwhip and it does not exploit inventory theory properly as it sets the safety stock 

to a function of average demand. Additionally, if the demand forecasts suffer from large 

   |
ˆvar t t j tj d d   

The forecast made at time t-j, of the order in time period t  The demand in period t 
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amounts of errors, the days forward coverage policy will potentially struggle to cope. The case 

company is also faced with production constraints, such as minimum and maximum production 

batch sizes due to large wastage costs, hence any established production policy (e.g. 

proportion-order-up-to policy) would be very challenging to implement here. Figure 3 bellow 

captures the trade-offs that the company has to reconcile when considering the packing 

frequency it adopts for each of the 9 case products. 

 

 

 
Figure 3 – Packing frequency trade-offs 

 

Our first recommendation was to adopt a constant safety stock approach. Also known as a 

‘time-varying safety stock’ Hedenstierna and Disney (2016) suggest this can be reviewed and 

updated periodically. Furthermore, we also need to consider the “NFT” situation – in a 

traditional ordering policy often the targeted finished goods inventory level is set as low as 

possible (or even zero). However, for the case company the opening stock should be enough to 

cover daily demand. When running a simulation for the 9 products (which follows the 

company’s current policy but with fixed packing frequency and a fixed safety stock) the 

bullwhip was significantly reduced. Table 2 show the current level of bullwhip and simulated 

bullwhip.  

Due to the high levels of bullwhip the company is confronted with, and less accurate 

forecasts, the NSAmp ratio for most of the 9 products is accordingly high (Table 2). However, 

in the simulation described above, the NSAmp is also reduced.  

 

Product 1 2 3 4 5 6 7 8 9 

Bullwhip ratio comparison: 

Current 

system 
21.47 17.70 26.24 43.89 33.34 47.92 19.60 18.04 38.56 

Simulation 7.867 3.71 6.29 7.63 12.31 12.76 3.90 6.04 12.94 

Finished goods NSAmp ratio comparison: 

Current 

system 
31.348 28.286 38.886 46.970 37.239 53.393 36.506 32.194 36.949 

Simulation 13.955 13.074 15.777 21.228 17.229 26.001 15.138 13.741 17.292 

Table 2 – A comparison of Bullwhip and NSAmp ratios 
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Furthermore, as products are dispatched on a first-come-first-served basis, we were able to 

model the age, ak of the product on the day it is dispatched to the customer. 

 

 

 

 

 

 

 

 

Raw material replenishment - The raw material replenishment process starts with future 

weekly order streams for the next 17 weeks (13). These are used to create derived demand for 

raw materials that are used to create purchase orders to suppliers (14, 16, 18), and to call-off 

raw materials (15, 17, 19). The lead-time is supplier dependent (between 2 and 8 weeks). There 

are many different supplier replenishment loops, one for each raw material, resulting in many 

replenishment decisions. The case company is essentially ordering raw materials by using 

batched policy in order to achieve economies of scale. However, it is suggested that a smaller 

batch size will be more cost-effective and gain stability of orders (Holland and Sodhi, 2004), 

using for example a two-bin Kanban ordering system. 

 

 
Figure 4 – Average age of products (Historical vs. Proposed performance) 

 

Information sharing 

There are multiple benefits of information sharing in order to reduce bullwhip in many 

aspects. Chen et al. (2000) suggested bullwhip can be reduced from sharing market demand 

from customer end. Demand information sharing is also recommended to reduce bullwhip in 

other literature (e.g. Lee et al., 1997). Wang and Disney (2016) summarised that information 

transparency and centralised decisions will be helpful to eliminate bullwhip. At the case 

company, the level of information transparency is relatively low, and the decision-making is 

also de-centralised. For market demand data, customers have not yet agreed to share market 

demand with the company.  
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The above findings support a series of improvement suggestions made to the case company, 

who is now trilling their implementations. These suggestions include the adoption of:  

 Exponential smoothing forecasts (with α = 0.5, no manual interventions); 

 Daily production targets based on 3 month average forecasts; 

 A constant safety stock and a days forward coverage linked to the duration till the next 

scheduled production; 

 No NFT will be attempted; 

 A kanban call-off system developed with key raw material suppliers. 

 

Future work 

While the results of our statistical analysis and simulation, combined with findings of the 

interviews and focus groups, support bullwhip effect theory, future work will focus on the 

development of a new model for the company’s forecasting, planning and replenishment 

process(es). Our recommendations are now trialled to be implemented across the 9 case 

products, with each product being produced twice a week rather than thrice fortnightly. The 

aim is to have a production system with no NFTs, no low-code products and fresher products 

to be sold to the retailers, with the same (or better) financial performance. If successful, the 

company expects that the fresher products have the potential to increase the number of outlets 

they are sold at, leading to an increase in demand volumes and, ultimately, in increased profits. 

Future work also involves developing new working standards and changing the hearts and 

minds of people across the organisation in order to get a scalable and sustainable business 

improvement. 

 

Conclusions 

Our empirical case study examines the extent to which a company’s operations and SC 

system impacts on the bullwhip effect, with a focus on demand forecasting, production 

planning and raw material replenishment processes. We also highlight multiple replenishment 

decisions and lead-times within a single echelon SC. In light of our findings, we suggest that 

the current stylised, theoretical SC models, and the knowledge derived from them, may need 

to be updated. 
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